• 제목/요약/키워드: Bone marrow cells

검색결과 883건 처리시간 0.023초

녹혈이 빈혈유발 Mouse에 미치는 영향 (Effect of Deer Blood on Aplastic Anemia Induced Mouse)

  • 김상미;하혜경;홍순복;김정숙
    • 한국한의학연구원논문집
    • /
    • 제10권1호
    • /
    • pp.127-135
    • /
    • 2004
  • Hematopoietic stem cells in bone marrow form all kinds of blood cells. In traditional medicine, functions of bone marrow cells are very similar to those of Essence(精) which is a fundamental factor of physical development and reproduction. Our experiment examined the effect of deer blood on aplastic anemia induced mouse using cyclophosphamide 150 mg/kg i.p injection before experiment and then another cyclophosphamide 120 mg/kg i.p injection on day 10. Then we administrated dried deer blood in distilled water for 5 days, 9 days and 10 days. We examined blood and marrow samples. In results, deer blood showed a trend of effectiveness on recovery of red blood cells and erythropoietin although they were not statistical significant. And deer blood did not show changes in CD34.

  • PDF

말초혈액 조혈모세포 채혈 및 이식 후 생착에 관한 연구 (A Study of Peripheral Blood Stem Cell Collection and Bone Marrow Engraftment after Peripheral Blood Stem Cell Transplantation)

  • 손계성;권흥만;권계철
    • 대한임상검사과학회지
    • /
    • 제38권1호
    • /
    • pp.9-15
    • /
    • 2006
  • Peripheral bood stem cell collection (PBSCC), including peripheral blood stem cell transplantation (PBSCT), has been utilized worldwide as a very beneficial treatment method instead of allogenic Bone Marrow Transplantation (BMT) because it has many advantages such as rapid bone marrow engraftment and hematopoietic recovery, easy and safe accessibility and lower risk of rejection compared with allogenic BMT. In order to identify most the observable parameter in PBSCC, we analyzed various hematological parameters before and after PBSCC, and evaluated the correlation between the time of bone marrow engraftment and the number of CD34+ cells. Thirteen patients, who underwent 54 PBSCCs from January, 2003 to August, 2004 at Chungnam National University Hospital due to various systemic neoplasms, were analyzed in aspects of various hematological parameters including CD34+ cells using by Flow Cytometry (FCM). PBSCC harvests are described below: Mononuclear cells (MNC) $2.3{\pm}1.4{\times}10^8/kg$ and CD34+ cells $0.63{\pm}0.35{\times}10^6/kg$ on average, respectively. There was a statistical significance in Hb and Hct before and after PBSCC, but not in WBC and platelet counts. The period to reach the hematological bone marrow engraftment was 13.4(10~21) days and 19.5(11~38) days according to the criteria of absolute neutrophile counts (ANC) ${\geq}500/uL$ and platelet counts ${\geq}50,000/{\mu}L$ in peripheral blood, respectively. There was a significant correlation between the numbers of CD34+ cell and ANC (p<0.05), and a borderline significance between MNC and ANC (p=0.051). We found that a group of patients, who were infused with CD34+ cells more than $3.5{\times}10^6/kg$, reached more rapidly the period of bone marrow engraftment in platelet counts (p=0.040). This present study suggested that Hb and Hct were the most useful parameters and should be closely monitored before and after PBSCC, that a PBSCT with the dosage of more than $3.5{\times}10^6/kg$ of CD34+ cells was needed to perform successful bone marrow engraftment, and additionally that platelet counts could be more useful in indicating bone marrow engraftment than ANC.

  • PDF

Effects of Interleukin-$1\beta$, Tumor Necrosis Factor-$\alpha$ and Interferon-$\gamma$ on the Nitric Oxide Production and Osteoclast Generation in the Culture of Mouse Bone Marrow Cells

  • Kwon, Young-Man;Kim, Se-Won;Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • 제31권2호
    • /
    • pp.67-72
    • /
    • 2006
  • Nitric oxide(NO) is a labile, uncharged, reactive radical that functions as a sensitive mediator of intercellular communication in diverse tissues. It has been reported that NO is produced by osteoblast and these results may suggest that NO is integrally involved in the regulation of osteoclast formation and osteoclast resorption activity by osteoblastic cells. We examined the effect of cytokines on NO release by mouse bone marrow cell. We also examined the effects of cytokines and sodium nitroprusside(SNP) on the formation of osteoclast-like cell from mouse bone marrow cells in culture. Cytokines stimulated NO production of mouse bone marrow cells, and N-nitro-L-arginine methyl ester, a specific inhibitor of NO synthase, suppressed the cytokine-induced NO production. SNP showed dual action in the generation of osteoclasts. The addition of $30{\mu}M$ SNP inhibited the formation of tartrate resistant acid phosphatase(TRAP)(+) multinucleated cell, whereas lower concentration($3{\mu}M$) of SNP enhanced it. Although the precise action of NO remains to be elucidated in detail, the action of NO in osteoclast generation in our studies seems to be associated, at least in part, with bone metabolism and bone pathophysiology.

Human Amnion-Derived Mesenchymal Stem Cells Protect Human Bone Marrow Mesenchymal Stem Cells against Oxidative Stress-Mediated Dysfunction via ERK1/2 MAPK Signaling

  • Wang, Yuli;Ma, Junchi;Du, Yifei;Miao, Jing;Chen, Ning
    • Molecules and Cells
    • /
    • 제39권3호
    • /
    • pp.186-194
    • /
    • 2016
  • Epidemiological evidence suggests that bone is especially sensitive to oxidative stress, causing bone loss in the elderly. Previous studies indicated that human amnion-derived mesenchymal stem cells (HAMSCs), obtained from human amniotic membranes, exerted osteoprotective effects in vivo. However, the potential of HAMSCs as seed cells against oxidative stress-mediated dysfunction is unknown. In this study, we systemically investigated their antioxidative and osteogenic effects in vitro. Here, we demonstrated that HAMSCs significantly promoted the proliferation and osteoblastic differentiation of $H_2O_2$-induced human bone marrow mesenchymal stem cells (HBMSCs), and down-regulated the reactive oxygen species (ROS) level. Further, our results suggest that activation of the ERK1/2 MAPK signal transduction pathway is essential for both HAMSCs-mediated osteogenic and protective effects against oxidative stress-induced dysfunction in HBMSCs. U0126, a highly selective inhibitor of extracellular ERK1/2 MAPK signaling, significantly suppressed the antioxidative and osteogenic effects in HAMSCs. In conclusion, by modulating HBMSCs, HAMSCs show a strong potential in treating oxidative stress- mediated bone deficiency.

Characterizations of Cell Lineage Markers in the Bone Marrow Cells of Recloned GFP Pigs for Possible Use of Stem Cell Population

  • Park, Kwang-Wook;Choi, Sung-Sik;Lee, Dong-Ho;Lee, Hwang;Choi, Seung-Kyu;Park, Chang-Sik;Lee, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • 제35권1호
    • /
    • pp.23-31
    • /
    • 2011
  • Two piglets and one juvenile pig were used to investigate closely what types of cells express green fluorescent protein (GFP) and if any, whether the GFP-tagged cells could be used for stem cell transplantation research as a middle-sized animal model in bone marrow cells of recloned GFP pigs. Bone marrow cells were recovered from the tibia, and further analyzed with various cell lineage markers to determine which cell lineage is concurrently expressing visible GFP in each individual animal. In the three animals, visible GFP were observed only in proportions of the plated cells immediately after collection, showing 41, 2 and 91% of bone marrow cells in clones #1, 2 and 3, respectively. The intensity of the visible GFP expression was variable even in an individual clone depending on cell sizes and types. The overall intensities of GFP expression were also different among the individual clones from very weak, weak to strong. Upon culture for 14 days in vitro (14DIV), some cell types showed intensive GFP expression throughout the cells; in particular, in cytoskeletons and the nucleus, on the other hand. Others are shown to be diffused GFP expression patterns only in the cytoplasm. Finally, characterization of stem cell lineage markers was carried out only in the clone #3 who showed intensive GFP expression. SSEA-1, SSEA-3, CD34, nestin and GFAP were expressed in proportions of the GFP expressing cells, but not all of them, suggesting that GFP expression occur in various cell lineages. These results indicate that targeted insertion of GFP gene should be pursued as in mouse approach to be useful for stem cell research. Furthermore, cell- or tissue-specific promoter should also be used if GFP pig is going to be meaningful for a model for stem cell transplantation.

Cell Versus Chemokine Therapy Effects on Cell Mobilization to Chronically Dysfunctional Urinary Sphincters of Nonhuman Primates

  • Williams, J. Koudy;Mariya, Silmi;Suparto, Irma;Lankford, Shannon S.;Andersson, Karl-Erik
    • International Neurourology Journal
    • /
    • 제22권4호
    • /
    • pp.260-267
    • /
    • 2018
  • Purpose: A major question remaining in approaches to tissue engineering and organ replacement is the role of native mobilized native cells in the regeneration process of damaged tissues and organs. The goal of this study was to compare the cell mobilizing effects of the chemokine CXCL12 and cell therapy on the urinary sphincter of nonhuman primates (NHP) with chronic intrinsic urinary sphincter dysfunction. Methods: Either autologous lenti-M-cherry labeled skeletal muscle precursor cells (skMPCs) or CXCL12 were injected directly into the sphincter complex of female NHPs with or without surgery-induced chronic urinary sphincter dysfunction (n=4/treatment condition). All monkeys had partial bone marrow transplantation with autologous lenti-green fluorescent protein (GFP) bone marrow cells prior to treatment. Labeled cells were identified, characterized and quantified using computer-assisted immunohistochemistry 6 months posttreatment. Results: GFP-labeled bone marrow cells (BMCs) were identified in the bone marrow and both BMCs and skMPCs were found in the urinary sphincter at 6-month postinjection. BMCs and skMPCs were present in the striated muscle, smooth muscle, and lamina propria/urothelium of the sphincter tissue. Sphincter injury increased the sphincter content of BMCs when analyzed 6-month postinjection. CXCL12 treatment, but not skMPCs, increased the number of BMCs in all layers of the sphincter complex (P<0.05). CXCL12 only modestly (P=0.15) increased the number of skMPCs in the sphincter complex. Conclusions: This dual labeling methodology now provides us with the tools to measure the relative number of locally injected cells versus bone marrow transplanted cells. The results of this study suggest that CXCL12 promotes mobilization of cells to the sphincter, which may contribute more to sphincter regeneration than injected cells.

지방조직 유래 줄기세포의 조골세포로의 분화에 대한 실험적 연구 (A STUDY ON THE OSTEOGENIC DIFFERENTIATION OF ADIPOSE-DERIVED ADULT STEM CELL)

  • 이의석;장현석;권종진;임재석
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권2호
    • /
    • pp.133-141
    • /
    • 2008
  • Stem cells have self-renewal capacity, long-term viability, and multiline age potential. Adult bone marrow contains mesenchymal stem cells. Bone marrow-derived mesenchymal stem cells (BMSCs) are progenitors of skeletal tissue components and can differentiate into adipocytes, chondrocytes, osteoblasts, and myoblasts in vitro and undergo differentiation in vivo. However, the clinical use of BMSCs has presented problems, including pain, morbidity, and low cell number upon harvest. Recent studies have identified a putative stem cell population within the adipose tissue. Human adipose tissue contains pluripotent stem cells simillar to bone marrow-derived stem cells that can differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. Human adipose tissue-derived stem cells (ATSCs) could be proposed as an alternative source of adult bone marrow stem cells, and could be obtained in large quantities, under local anesthesia, with minimal discomfort. Human adipose tissue obtained by liposuction was processed to obtain ATSCs. In this study, we compared the osteogenic differentiation of ATSCs in a specific osteogenic induction medium with that in a non-osteogenic medium. ATSCs were incubated in an osteogenic medium for 28 days to induce osteogenesis respectively. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining. Expression of osteocyte specific bone sialoprotein, osteocalcin, collagen type I and alkaline phosphatase, bone morphogenic protein 2, bone morphogenic protein 6 was confirmed by RT-PCR. ATSCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes was also detected. Since this cell population can be easily identified through fluorescence microscopy, it may be an ideal source of ATSCs for further experiments on stem cell biology and tissue engineering. The present results show that ADSCs have an ability to differentiate into osteoblasts. In the present study, we extend this approach to characterize adipose tissue-derived stem cells.

골수기질세포에서 방사선 반응 유전자로서의 Plasminogen Activator Inhibitor-1 (Plasminogen Activator Inhibitor-1 as a Radiation-Responsive Gene in Bone Marrow Stromal Cells)

  • 송지연;권형주;박찬규;조덕연;이영희
    • 한국발생생물학회지:발생과생식
    • /
    • 제9권1호
    • /
    • pp.43-48
    • /
    • 2005
  • 조혈세포의 주요 서식지가 되는 골수기질세포는 줄기세포의 운영을 결정하는 다양한 인자들을 제공한다. 방사선 요법은 항암치료법으로 널리 활용되고 있으나, 조혈세포의 파괴로 인한 부작용이 심각한 문제로서 조혈세포에 의한 혈액 세포가 빠른 시간 내에 회복되는 것이 필수적이다. 본 연구에서는 방사선을 조사했을 때의 줄기세포 서식지를 구성하는 세포인 골수기질세포에서 발현되는 유전자를 탐색하여 그 기능과 조절 및 혈액 형성을 이해하는 기초를 마련하고자 하였다. 방법론적으로는 polymerase chain reaction(PCR) 및 agarose 전기영동 방법을 활용한 differential display를 활용하였으며, 결과로서 여러 후보 유전자가 선별되었으나, plasminogen activator inhibitor-1(PAI-1) 유전자만이 감마선에 의해 유도됨이 반복 확인되었다. PAI-1 유전자 유도의 의미는 향후에 더 연구해야 할 것이다.

  • PDF

Hematopoietic Effect of Phellinus linteus Polysaccharide in Mouse Splenocytes and Bone Marrow Cells

  • Won, Tae-Joon;Kim, Min-Soo;Woo, Jong-Shick;Han, Sang-Beom;Hwang, Kwang-Woo
    • Biomolecules & Therapeutics
    • /
    • 제15권4호
    • /
    • pp.230-234
    • /
    • 2007
  • In anti-cancer therapies, radiotherapy and chemotherapy show a superior inhibition effect on cancer cell growth, but those are very toxic to normal tissues and organs. Particularly, drugs for neutropenia, one of chemotherapy agents, which suppress the function of bone marrow, are needed to be controlled in terms of their dosage and therapy period because of their side effect. Phellinus linteus polysaccharide (PL) has been reported to increase the number of splenocytes and bone marrow cells. PL has been shown to decrease the side effects of cyclophosphamide (CYC) treatment to the cancer patients. PL showed no effects in semisolid clonogenic assay, suggesting that PL doesn't contain substantial compounds to substitute for colony stimulating factors (CSFs). On the other hand, PL increased the expression of SCF, IL-3, GM-CSF, TPO genes. These results indicate that PL may promote the growth and proliferation of splenocytes and bone marrow cells through indirect or CSFs-dependent pathway, which may lead to a hematopoiesis.

위암 환자의 골수에서 발견된 Cytokeratin 양성세포의 임상적 의의 (Cytokeratin-positive Cells in the Bone Marrow of Patients with Gastric Cancer)

  • 신정혜;구기범;박성훈;정호영;배한익;유완식
    • Journal of Gastric Cancer
    • /
    • 제6권4호
    • /
    • pp.221-226
    • /
    • 2006
  • 목적: 암 환자의 골수에서 발견되는 cytokeratin 양성세포와 암의 재발과의 상관관계에 대해서는 알려진 바가 많지 않다. 이에 위암환자의 골수에서 발견되는 cytokeratin 양성세포가 위암 환자의 재발과 생존율을 예측할 수 있는지 알아보고자 하였다. 대상 및 방법: 1998년 6월부터 2000년 7월까지 경북대학교병원 외과에서 원발성 위암으로 수술받은 환자 419명을 대상으로 하였다. 수술 직전 장골능선에서 골수를 흡인하여 단핵구를 분리하고 항 cytokeratin 항체를 이용하여 면역세포화학적 염색을 하였다. 결과: Cytokeratin 양성세포는 219예(52.4%)에서 발견되었고, 위암의 침윤깊이(P=0.021), 병기(P=0.026)에 따라서 통계학적으로 유의한 차이가 있었으나, 암의 위치, 육안형, 림프절전이, 원격전이, 분화도에 따라서는 유의한 차이가 없었다. 골수의 cytokeratin 양성세포 유무에 따른 5년 생존율은 유의한 차이가 없었고(P=0.248), 재발여부, 재발부위도 유의한 차이가 없었다. 결론: 위암 환자의 골수에서 cytokeratin 양성세포 유무는 예후인자로 사용되기 어렵고 재발양상을 예측하기도 어렵다.

  • PDF