• Title/Summary/Keyword: Bone cement displacement

Search Result 9, Processing Time 0.017 seconds

Delayed Bone Cement Displacement Following Balloon Kyphoplasty

  • Wang, Hee-Sun;Kim, Hyeun-Sung;Ju, Chang-Il;Kim, Seok-Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.4
    • /
    • pp.212-214
    • /
    • 2008
  • We report a rare case of delayed cement displacement after balloon kyphoplasty in patient with K$\ddot{u}$mmell's desease. A 78-year-old woman with K$\ddot{u}$mmell's desease at T12 level received percutaneous balloon kyphoplasty. Two months after surgery, the patient complained of progressive severe back pain. Computed tomographic scans revealed a breakdown of the anterior cortex and anterior displacement of bone cement. Although this complication is very rare, it is likely to occur in treatment of K$\ddot{u}$mmell's disease accompanying anterior cortical defect.

Posterior Screw Fixation in Previously Augmented Vertebrae with Bone Cement : Is It Inapplicable?

  • Park, Jae Hoo;Ju, Chang Il;Kim, Seok Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.1
    • /
    • pp.114-119
    • /
    • 2018
  • Objective : The purpose of this study was to determine the feasibility of screw fixation in previously augmented vertebrae with bone cement. We also investigated the influence of cement distribution pattern on the surgical technique. Methods : Fourteen patients who required screw fixation at the level of the previous percutaneous vertebroplasty or balloon kyphoplasty were enrolled in this study. The indications for screw fixation in the previously augmented vertebrae with bone cement included delayed complications, such as cement dislodgement, cement leakage with neurologic deficits, and various degenerative spinal diseases, such as spondylolisthesis or foraminal stenosis. Clinical outcomes, including pain scale scores, cement distribution pattern, and procedure-related complications were assessed. Results : Three patients underwent posterior screw fixation in previously cemented vertebrae due to cement dislodgement or progressive kyphosis. Three patients required posterior screw fixation for cement leakage or displacement of fracture fragments with neurologic deficits. Eight patients underwent posterior screw fixation due to various degenerative spinal diseases. It was possible to insert screws in the previously augmented vertebrae regardless of the cement distribution pattern; however, screw insertion was more difficult and changed directions in the patients with cemented vertebrae exhibiting a solid pattern rather than a trabecular pattern. All patients showed significant improvements in pain compared with the preoperative levels, and no patient experienced neurologic deterioration as seen at the final follow-up. Conclusion : For patients with vertebrae previously augmented with bone cement, posterior screw fixation is not a contraindication, but is a feasible option.

Displacement-recovery-capacity of superelastic SMA fibers reinforced cementitious materials

  • Choi, Eunsoo;Mohammadzadeh, Behzad;Hwang, Jin-Ha;Lee, Jong-Han
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.157-171
    • /
    • 2019
  • This study investigated the effects of the geometric parameters of superelastic shape memory alloy (SE SMA) fibers on the pullout displacement recovering and self-healing capacity of reinforced cementitious composites. Three diameters of 0.5, 0.7 and 1.0 mm and two different crimped lengths of 5.0 and 10.0 mm were considered. To provide best anchoring action and high bond between fiber and cement mortar, the fibers were crimped at the end to create spear-head shape. The single fiber cement-based specimens were manufactured with the cement mortar of a compressive strength of 84 MPa with the square shape at the top and a dog-bone shape at the bottom. The embedded length of each fiber was 15 mm. The pullout test was performed with displacement control to obtain monotonic or hysteretic behaviors. The results showed that pullout displacements were recovered after fibers slipped and stuck in the specimen. The specimens with fiber of larger diameter showed better displacement recovering capacity. The flag-shaped behavior was observed for all specimens, and those with fiber of 1.0 mm diameter showed the clearest one. It was observed that the length of fiber anchorage did not have a significant effect on the displacement recovery, pullout resistance and self-healing capacity.

Frontotemporal Craniotomy for Clipping of Unruptured Aneurysm Using a Diamond-Coated Thread Wire Saw and Reconstruction Using Calcium Phosphate Cement without Metal Fixation

  • Hiroyuki Koizumi;Daisuke Yamamoto;Hajime Handa;Wakiko Saruta;Satoru Shimizu;Takuichiro Hide;Toshihiro Kumabe
    • Archives of Plastic Surgery
    • /
    • v.50 no.3
    • /
    • pp.248-253
    • /
    • 2023
  • Metal fixation systems for cranial bone flaps cut by a drill are convenient devices for cranioplasty, but cause several complications. We use modified craniotomy using a fine diamond-coated threadwire saw (diamond T-saw) to reduce the bone defect, and osteoplasty calcium phosphate cement without metal fixation. We report our outcomes and tips of this method. A total of 78 consecutive patients underwent elective frontotemporal craniotomy for clipping of unruptured intracranial aneurysms between 2015 and 2019. The follow-up periods ranged from 13 to 66 months. The bone fixation state was evaluated by bone computed tomography (CT) and three-dimensional CT (3D-CT). The diamond T-saw could minimize the bone defect. Only one wound infection occurred within 1 week postoperatively, and no late infection. No pain, palpable/cosmetically noticeable displacement of the bone flap, fluid accumulations, or other complications were observed. The condition of bone fixation and the cosmetic efficacy were thoroughly satisfactory for all patients, and bone CT and 3D-CT demonstrated that good bone fusion. No complication typical of metal fixation occurred. Our method is technically easy and safety, and achieved good mid-term bone flap fixation in the mid-term course, so has potential for bone fixation without the use of metal plates.

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE EFFECTS OF ALVEOLAR BONE LOSS ON STRESS DISTRIBUTION IN POST-RECONSTRUCTED TEETH (치조골 흡수가 포오스트로 인한 치근내 응력에 미치는 영향에 관한 삼차원 유한요소법 분석)

  • Lee, Ky-Young;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.674-696
    • /
    • 1997
  • There're many cases that should be reconstructed with post and core when clinical crown is destructed. But this post and core restoration may cause damaging stress on the teeth. Previous finite element study was restricted to normal bone model relatively close to cemen-toenamel junction. Moreover, the test of a model with diminished bone support was rare. The purpose of this study is to test the effects of alveolar bone loss on the magnitude, stress distribution and displacement of post reconstructed teeth. In this study, it was assumed that the coronal portion of upper incisor was severely destructed. After conventional endodontic treatment, it was restored with post and core. The PFM restoration was made on it. This crown was cemented with ZPC. Alveolar bone was classified by 4 types of bone, such as normal, 2 mm, 4 mm, 6 mm bone, according to the bone loss. Meanwhile, the material of post are divided into 2 types of materials, such as gold, co-cr. Force was applied to two directions. One was fuctional maximum bite force (300 N) applied to the spot just lingual to the incisal edge with the angle of 45 degree to the long axis of the tooth, and the other one was horizontal force (300 N) applied to the labial surface. The results analyzed with three dimensional finite element method were as follows : 1. Stress was concentrated on the adjacent dentin of the post apex, one third portion of the post apex and the labial & lingual mid-portion of the root in all case. The stress of middle third of the root was apparently concentrated on the labial aspect. 2. The stress on adjacent dentin of the post apex and one third of the post apex increased as alveolar bone height moved apically. This increase was dramatic beyond 4 mm bone loss model. 3. The stress of the post apex was spreaded to the middle third of the post and greater than gold post in the case of metal post. 4. The displacement of the neck of post was the greatest in one of the post-cement interface and this increased as alveolar bone height moved apically. Besides the displacement of the metal post is slightly lower than one of the gold post.

  • PDF

Prediction of Cement Volume for Vertebroplasty Based on Imaging and Biomechanical Results

  • Lee, Sung-Jae;Tack, Gye-Rae;Lee, Seung-Yong;Jun, Bong-Jae;Lim, Do-Hyung;Shin, Jung-Woog;Kim, Jeong-Koo;Shin, Kyu-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.1041-1050
    • /
    • 2001
  • Control of bone cement volume (PMMA) may be critical for preventing complications in vertebroplasty, the percutaneous injection of PMMA into vertebra. The purpose of this study was to predict the optimal volume of PMMA injection based on CT images. For this, correlation between PMMA volume and textural features of CT images was examined before and after surgery to evaluate the appropriate PMMA amount. The gray level run length analysis was used to determine the textural features of the trabecular bone. Extimation of PMMA volume was done using 3D visualization with semi-automatic segmentation on postoperative CT images. Then, finite element (FE) models were constructed based on the CT image data of patients and PMMA volume. Appropriate material properties for the trabecular bone were assigned by converting BMD to elastic modulus. Structural reinforcement due to the changes in PMMA volume and BMD was assessed in terms of axial displacement of the superior endplate. A strong correlation was found between the injected PMMA volume and the area of the intertrabecular space and that of trabecular bone calculated from the CT images (r=0.90 and -0.90, respectively). FE results suggested that vertebroplasty could effectively reinforce the osteoporotic vertebra regardless of BMD or PMMA volume. Effectiveness of additional PMMA injection tended to decrease. For patients with BMD well lower than 50mg/ml, injection of up to 30% volume of the vertebral body is recommended. However, less than 30% is recommended otherwise to avoid any complications from excessive PMMA because the strength has already reached the normal level.

  • PDF

A STUDY ON STRESS DISTRIBUTION OF ENDODONTICALLY TREATED TOOTH ACCORDING TO THE VARIOUS POST LENGTH USINGTHREE-DIMENSIONAL FINITE ELEMENT METHOD (포스트 길이가 치근내 응력분산에 미치는 영향에 관한 삼차원 유한요소법적 연구)

  • Choi, Soo-Yong;Lee, Sun-Hyung;Yang, Jae-Ho;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.2
    • /
    • pp.177-197
    • /
    • 1995
  • The endodontically treated tooth is generally restored with post & core, owing to the brittleness and the loss of large amount of tooth structure. Although there have been lots of studies about the endodontically treated teeth, the three-dimensional quantitative studies about the strees distribution of them are in rare cases. In this study, it was assumed that the coronal portion of the upper incisou had severely damaged. After the root canal therapy it was post cored, and restored with PFM crown, for this experiment nine types of model were constructed : 1); long, 2); medium, 3); short gold post for the roots supported with a narmal alveolar bone, 4); long, 5); medium, 6); short gold post for the roots supported with an alveolar bone resorbed to its 1/3 of root length, 7); long, 8); medium, 9); short base metal post for the roots supported with an alveolar bone resorbed to its 1/3 of root length. Force was applied from two directions. One was functional maximum bite force(300N) applied to the spot just lingual to the incisal edge with the angle of 45 degrees to the long axis of the tooth, and the other one was horizontal force(300N) applied to the labial surface. The results analyzed with three-dimensional finite element method were as follows : 1. Stress was concentrated on the middle portion of the labial side dentin of the root and the lingual portion of the apical dentin of the root. Stress in the post showed maximum value at 2 mm above the post apex. 2. In case of the long post and base metal post, strees was concentrated on the apex of the root and the post. 3. In case of the longer post, the displacement on the post-cement interface was lessened. The gold post was more displaceable than the base metal post. 4. In case of the alveolar bone resorption, stress concentrated on the root and the post and displacement on the post-cement interface were increased.

  • PDF

STRESS DISTRIBUTION OF ENDODONTICALLY TREATED TOOTH ACCORDING TO THE POST -THREE-DIMENSIONAL FINITE ELEMENT STUDY- (포스트가 치근내 응력분산에 미치는 영향에 관한 삼차원 유한요소법적 연구)

  • Lee, Sun-Hyung;Choi, Soo-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.4
    • /
    • pp.780-790
    • /
    • 1996
  • The endodontically treated tooth is generally restored with post and core, owing to the brittleness and the loss of large amount of tooth structure. Although there have been lots of studies about the endodontically treated teeth, the three-dimensional quantitative studies about the stress distribution of them are in rare cases. In this study, it was assumed that the coronal portion of the upper incisor had extensively damaged. After the root canal therapy it was post cored, and restored with PFG crown. The three-dimensional model, in which the root was supported with a normal alveolar bone, was constructed. Force was applied to the centric stop point with the angle of 135 degrees to the long axis of the tooth. Force was assumed to be 250N as functional maximum bite force of upper central incisors. The results analyzed with three-dimensional finite element method were as follows : 1. Stress was concentrated on the middle portion of the labial side dentin and the apical portion of the dentin. 2. Stress in the post was more concentrated on the post apex. 3. The displacement of the post at the post-cement interface was almost symmetrical la-bio-lingually. 4. It assumed that restoring extensively damaged tooth with a post-core and PFG crown is an adequate method of restoration.

  • PDF

A Biomechanical Study on the Various Factors of Vertebroplasty Using Image Analysis and Finite Element Analysis (의료영상 분석과 유한요소법을 통한 추체 성형술의 다양한 인자들에 대한 생체 역학적 효과 분석)

  • 전봉재;권순영;이창섭;탁계래;이권용;이성재
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.171-182
    • /
    • 2004
  • This study investigates the biomechanical efficacies of vertebroplasty which is used to treat vertebral body fracture with bone cement augmentation for osteoporotic patients using image and finite element analysis. Simulated models were divided into two groups: (a) a vertebral body, (b) a functional spinal unit(FSU). For a vertebral body model, the maximum axial displacement was investigated under axial compression to evaluate the effect of structural integrity. The stiffness of each FE model simulated was normalized by the stiffness of intact model. In the case of FSU model, 3 types of compression fractures were formulated to assess the influence on spinal curvature changes. The FSU models were loaded under compressive pressure to calculate the change of spinal curvature. The results according to the various factors suggest that vertebroplasty has the biomechanical efficacy of the increment of structural reinforcement in a patient who has relatively high level of BMD and a patient with the amount of 15%, PMMA injection of the cancellous bone volume. The spinal curvatures after compression fracture simulation vary from 9$^{\circ}$ to 17$^{\circ}$ of kyphosis compared to that the spinal curvature of normal model was -2.8$^{\circ}$ of lordosis. These spinal curvature changes cause the severe spinal deformity under the same loading. As the degree of compressive fracture increases the spinal deformity also increases. The results indicate that vertebroplasty has the increasing effect of the structural integrity regardless of the amount of PMMA or BMD and the restoration of decreased vertebral body height may be an important factor when the compressive fracture caused the significant height loss of vertebral body.