• Title/Summary/Keyword: Bone Regeneration

Search Result 1,021, Processing Time 0.03 seconds

Evaluation of Various Scaffolds for Tissue Engineered Biodisc Using Annulus Fibrosus Cells (조직공학적 바이오디스크의 섬유륜 재생을 위한 지지체 특성평가)

  • Ha, Hyun-Jung;Kim, Soon-Hee;Yoon, Sun-Jung;Park, Sang-Wook;So, Jung-Won;Kim, Moon-Suk;Rhee, John-M.;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.26-30
    • /
    • 2008
  • This study was designed to investigate the effect of hybridization of synthetic/natural materials for annulus fibrosus (AF) tissue regeneration in vitro and in vivo. The synthetic/natural hybrid scaffolds were prepared using PLGA (poly (lactic-co-glycolic) acid), SIS (small intestinal submucosa) and DBP (demineralized bone particles). PLGA, PLGA/SIS(20%), PLGA/DBP(20%) and PLGA/SIS (10%)/DBP (10%) scaffold were manufactured by solvent casting/salt leaching method. Compressive strength was measured. Rabbit AF cells were isolated, cultured and seeded into experimental groups. Hydroxyproline production and DNA quantity of AP cells on each scaffold was measured at 2, 4 and 6 weeks after in vitro culture. Cell-scaffold composites were implanted subcutaneously into athymic mice. After 1,4 and 6 weeks postoperatively, specimens were taken and H&E, Safranin-O and type I collagen staining were carried out concerning formation of cartilagenous tissue. In vitro PLGA/SIS scaffold was evaluated for total collagen content (bydroryproline/DNA content) and PLGA scaffold was evaluated for compressive strength.

Regulation of cementoblast differentiation and mineralization using conditioned media of odontoblast (상아모세포의 조건배지를 이용한 백악모세포의 분화와 석회화 조절)

  • Moon, Sang-Won;Kim, Hye-Sun;Song, Hyun-Jung;Choi, Hong-Kyu;Park, Jong-Tae;Kim, Heung-Joong;Jang, Hyun-Seon;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.385-396
    • /
    • 2006
  • For the regeneration of periodontal tissues, the microenvironment for new attachment of connective tissue fibers should be provided, At this point of view, cementum formation in root surface plays a key role for this new attachment. This study was performed to figure out which factor promotes differentiation of cementoblast Considering anatomical structure of tooth, we selected the cells which may affect the differentiation of cementoblast - Ameloblast, OD11&MDPC23 for odontoblasts, NIH3T3 for fibroblsts and MG63 for osteoblasts. And OCCM30 was selected for cementoblast cell line. Then, the cell lines were cultured respectively and transferred the conditioned media to OCCM30. To evaluate the result, Alizarin red S stain was proceeded for evaluation of mineralization. The subjected mRNA genes are bone sialoprotein(BSP), alkaline phosphate(ALP) , osteocalcin(OC), type I collagen(Col I), osteonectin(SPARC ; secreted protein acidic and rich in cysteine). Expression of the gene were analysed by RT-PCR, The results were as follows: 1. For alizarin red S staining, control OCCM30 didn't show any mineralized red nodules until 14 days. But red nodules started to appear from about 4 days in MDPC-OCCM30 & OD11-OCCM30. 2. For results of RT-PCR, ESP mRNAs of control-OCCM30 and others were expressed from 14 days, but in MDPC23-OCCM30 & OD11-OCCM30 from 4 days. Like this, the gene expression of MDPC23-OCCM30 & OD11-OCCM30 were detected much earlier than others. 3. For confirmation of odontoblast effect on cementoblast, conditioned media of osteoblasts(MG63) which is mineralized by producing matrix vesicles didn't affect on the mineralized nodule formation of cementoblasts(OCCM30). This suggest the possibility that cementoblast mineralization is regulated by specific factor in dentin matrix protein rather than matrix vesicles. Therefore, we proved that the dentin/odontoblast promotes differentiation/mineralization of cementoblasts. This new approach might hole promise as diverse possibilities for the regeneration of tissues after periodontal disease.

Wedelolactone Promotes the Chondrogenic Differentiation of Mesenchymal Stem Cells by Suppressing EZH2

  • Wei Qin;Lin Yang;Xiaotong Chen;Shanyu Ye;Aijun Liu;Dongfeng Chen;Kunhua Hu
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.326-341
    • /
    • 2023
  • Background and Objectives: Osteoarthritis (OA) is a degenerative disease that leads to the progressive destruction of articular cartilage. Current clinical therapeutic strategies are moderately effective at relieving OA-associated pain but cannot induce chondrocyte differentiation or achieve cartilage regeneration. We investigated the ability of wedelolactone, a biologically active natural product that occurs in Eclipta alba (false daisy), to promote chondrogenic differentiation. Methods and Results: Real-time reverse transcription-polymerase chain reaction, immunohistochemical staining, and immunofluorescence staining assays were used to evaluate the effects of wedelolactone on the chondrogenic differentiation of mesenchymal stem cells (MSCs). RNA sequencing, microRNA (miRNA) sequencing, and isobaric tags for relative and absolute quantitation analyses were performed to explore the mechanism by which wedelolactone promotes the chondrogenic differentiation of MSCs. We found that wedelolactone facilitates the chondrogenic differentiation of human induced pluripotent stem cell-derived MSCs and rat bone-marrow MSCs. Moreover, the forkhead box O (FOXO) signaling pathway was upregulated by wedelolactone during chondrogenic differentiation, and a FOXO1 inhibitor attenuated the effect of wedelolactone on chondrocyte differentiation. We determined that wedelolactone reduces enhancer of zeste homolog 2 (EZH2)-mediated histone H3 lysine 27 trimethylation of the promoter region of FOXO1 to upregulate its transcription. Additionally, we found that wedelolactone represses miR-1271-5p expression, and that miR-1271-5p post-transcriptionally suppresses the expression of FOXO1 that is dependent on the binding of miR-1271-5p to the FOXO1 3'-untranscribed region. Conclusions: These results indicate that wedelolactone suppresses the activity of EZH2 to facilitate the chondrogenic differentiation of MSCs by activating the FOXO1 signaling pathway. Wedelolactone may therefore improve cartilage regeneration in diseases characterized by inflammatory tissue destruction, such as OA.

A Retrospective Study of Survival Rate in single Brnemark TiUniteTM Implant (단일 치아 결손시 TiUniteTM 표면 처리한 임플란트의 생존율에 대한 후향적 연구)

  • Kim, Hye-Jin;Yang, Seung-Min;Kye, Seung-Beom;Shin, Seung-Yun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.3
    • /
    • pp.267-277
    • /
    • 2009
  • Recently implant supported single crown is the popular treatment option to replace a single missing tooth. The purpose of this retrospective study was to analyze and evaluate the survival of implants with the $TiUnite^{TM}$ surface for single tooth replacement. From September 2002 to December 2006, 269 TiUniteTM surfaced implants were used in single tooth replacements at the Institute of Oral Health Science, Samsung Medical Center. Twenty one cases were excluded because of neighbor implants, missing records & short follow up period. Among 248 implants, the 129 implants (52.0%) were inserted in the maxilla and 119 (48.0%) in the mandible. One hundred implants placement (40.3%) were combined with guided bone regeneration, and 36 implants placement (14.5%) were combined with sinus bone augmentation. Mean observation period was $26.0{\pm}11.8$ months after implant placement. Twelve implants were recorded as failures, rendering a single implant survival rate of 95.2% over the observation period. Among failed 12 implants, 10 implants placed in the maxilla. The survival rate in the maxilla was 92.2% and in the mandible was 98.3%. The use of $TiUnite^{TM}$ surfaced single implant placement showed high survival rate for short time period.

Osteoarthritis of the Temporomandibular Joint (측두하악관절의 골관절염)

  • Lee, Jeong-Yun
    • Journal of Oral Medicine and Pain
    • /
    • v.38 no.1
    • /
    • pp.87-95
    • /
    • 2013
  • Osteoarthritis (OA) of the temporomandibular joint (TMJ) is a severe form of temporomandibular disorders (TMDs), presenting gradual breakdown of articular cartilage and subchondral bone by the functional load sustained to exceed the physiologic tolerance of the joint. In such a joint loaded, offensive bioactive materials such as matrix degrading proteins, cytokines, and free radicals increase in concentration to shift the tissue response in the joint to degeneration from regeneration or remodeling. Recently, it has been issued that obesity can play an offensive role in pathogenesis of OA in a metabolic way. Adipokines released by adipose cells are present at higher concentration in the arthritic joint and joints of obese individuals. However, because of conflicting data reported, further scientific study should be performed to elucidate the practical role of adipokines in pathogenesis of TMJ OA. As far as the clinical signs and symptoms of TMJ OA are not much different from those of other forms of TMD and any definitive treatment modality to control directly the bone resorptive activity is not available yet, the treatment of TMJ OA should be directed to reduce the physical load and enhance the physiologic tolerance of the joint by means of conservative treatment such as physical therapy, medication, and occlusal splint therapy for sufficient period and, if needed after that, supplementary surgical procedure such as intra-articular injection, arthrocenthesis, and arthroscopic surgery that have turned out to be effective to control OA signs and symtpoms. Enthusiastic reassurance and motivation for patients to control behaviors for themselves to reduce unnecessary functional load in daily life is very important for the joint to reach to more favorable orthopedic stability of the TMJ more quickly, guaranteeing more successful management TMJ OA.

Effects of chitosan on the characteristics of periodontal ligament, calvaria cells and gingival fibroblasts (Chitosan이 치주인대, 두개관 및 치은섬유아세포의 성상에 미치는 영향)

  • Kim, Sun-Hee;Kwon, Young-Hyuk;Lee, Man-Sup;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.1
    • /
    • pp.17-35
    • /
    • 1998
  • Chitosan, with a chemical structure similar to hyaluronic acid, has been implicated as a wound healing agent. The purpose of this research was to evaluate the effects of chitosan on the characteristics of periodontal ligament cells, calvaria cells and gingival fibroblasts and to define the effects of chitosan on bone formation in vitro. In control group, the cells were cultured alone with Dulbecco's Modified Eagle's Medium contained with 10% Fetal bovine serum, 100unit/ml penicillin, $100{\mu}g/ml$ streptomycin, $0.5{\mu}g/ml$ amphotericin-B. In experimental group, chitosan($40{\mu}g/ml$) is added into the above culture condition. And then each group was characterized by examining the cell proliferation at 1,3,5,7,9,12,15 day, the amount of total protein synthesis, alkaline phosphatase activity at 3, 7 day and the ability to produce mineralized nodules of rat calvaria cell at 11 day. The results were as follows : 1. At early time both periodontal ligament cells and calvaria cells in chitosan-treated group proliferated more rapidly than in non-treated control group, but chitosan-treated group of periodontal ligament cells at 9 days and calvaria cells at 12days showed lower growth rate than control group. Gingival fibroblast in chitosan-treated group had lower growth rate than in control group but the difference was not statistically significant (P< 0.01).2. Both periodontal ligament cells and calvaria cells in chitosan-treated group showed much protein synthesis than in control group at 3 days, but showed fewer than in control group at 7 days. Amount of total protein synthesis of gingival fibroblast didn't have statistically significant difference among the two groups(P< 0.01). 3. At 3 and 7 days, alkaline phosphatase activity of periodontal ligament cells and calvaria cells was increased in chitosan-treated group, but at 7 days there was not statistically significant difference among the two groups of calvaria cells (P< 0.01). Alkaline phosphatase activity of gingival fibroblast didn't have statistically significant difference among the two groups(P<0.01). 4. Mineralized nodules in chitosan-treated group of rat calvaria cells were more than in control group. In summery, chitosan had an effect on the proliferation, protein systhesis, alkaline phosphatase activity of periodontal ligament cells and calvaria cells, and facilitated the formation of bone. It is thought that these effects can be used clinically in periodontal regeneration therapy.

  • PDF

The effects of calcium sulfate on periodontal ligament cells (Calcium sulfate제재가 치주인대세포에 미치는 영향)

  • Lee, Jun-Ho;Kim, So-Young;Choi, Seong-Ho;Chai, jung-Kiu;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.2
    • /
    • pp.235-247
    • /
    • 1998
  • Calcium sulfate has a long history of medical use as an implant material. The biocompatibiliry of the material has been clearly established. Bone ingrowth concomitant with resorption occurs rapidly with efficient conduction of bone from particle to particle. Calcium sulfate also has a potential for functioning as a good bamer membrane. The purpose of this study was to compare the biocompatibility of different types of calcium sulfate grafting materials including an expelimental calcium sulfate compound on periodontal ligament cells in vitro as a preliminary test towards the development of a more convenient and useful form of grafting material which could promote regeneration of periodontal tissue. Human periodontal ligament cells were collected from the premolar teeth extracted for orthodontic treatment. cells were cultured in a.MEM culture medium containing 20% FBS, at $37^{\circ}C$ and 100% humidity, in a 5% CO2 incubator. Cells were cultured into 96 well culture plate $1{\times}104$ cells per well with $\alpha$-MEM and incubated for 24 hours. After discarding the medium, those cells were cultured in $\alpha$-MEM contained with 10% FBS alone (control group), in medcal-grade calcium sulfate(MGCS group), in plaster(plaster group), experimental calcium sulfate paste(CS paste group) for 1, 2, 3 day respectively. And then each group was characterized by examining of the cell counting, MTI assay, collagen synthesis. The results \vere as follows. 1. In the analysis of cell proliferation by cell counting, both medical-grdde calcium sulfate group and plaster group showed no stastically significant difference at day 1, 2, 3 accept for plaster group at day 1 compared to control group, but there was stastically significant difference between CS paste group and all other groups at day 1, 2, 3(P<0.05). 2. In the analysis of cytotoxicity by MIT assay, both medical-grade calcium sJlfate group and plaster group showed no stastically significant difference compared to control group at day 1, 2, 3 but there was stastically significant difference between CS paste group and all other groups at day 1, 2, 3(P<0.OS). 3. In the analysis of collagen synthesis by immunoblotting assay, high level was detected for medical-grade calcium sulfate group and plaster group at day 1, 2, 3 compared to CS paste group. On the basis of these results, medical-grade calcium sulfate and plaster was shown to possess biocompatibility whereas the CS paste had unfavourable outcome. This observation shows a need for modification of the materials contained in calcium sulfate paste.

  • PDF

The effect of Ca-P coated bovine bone mineral on bone regeneration around dental implant in dogs (개 모델에서의 임플란트 주위 골결손시 Ca-P 표면 처리된 이종골의 효과)

  • Cho, Su-Yeon;Jeon, Hye-Ran;Lee, Sun-Kyoung;Lee, Seoung-Ho;Lee, Jun-Young;Han, Geum-A
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.4
    • /
    • pp.913-923
    • /
    • 2006
  • 목적 : 최근 발치 후 즉시 임플란트 식립은 널리 사용되는 수술 방식이다. 이 연구의 목적은 임플란트 주위 골결손시 Ca-P으로 표면 처리된 이종골을 사용하여 골재생을 평가하기 위함이다. 재료와 방법 : 두 마리의 개 모델에서 하악 소구치와 제일 대구치를 발치하였다. 발치 6주 후 trephine bur를 이용하여 7.5 mm 지름과 5 mm 깊이를 가진 결손부를 형성하였다. 이 후 이 결손부의 중앙에 3.5 mm 지름과 15mm 길이의 fixture(GS II)를 식립하였다. 결과적으로 임플란트와 주변을 둘러싸고 있는 골 사이에는 2.0 mm정도의 gap이 만들어진다. 준비된 결손부 내로 자기골 또는 $Biocera^{(R)}$를 채웠다. 각각 4주, 8주 후 조직 절편을 제작하였다. 조직학적 평가를 위해 Block biopsy를 시행하였다. 결과 : 두 집단 모두 임상적으로 골이 완전히 채워졌다. 자가골이 이식된 부위(control)의 평균 골-임플란트 접촉(BIC)은 각각 4주째 $28.2{\pm}19%$였고, 8주째 $44.9{\pm}9%$였다. $Biocera^{(R)}$가 이식된 부위(test)의 평균 BIC는 각각 4주째 $34.6{\pm}27%$였고, 8주째 $27.6{\pm}23%$였다. 자가골이 이식된 부위(control)의 평균 골밀도는 각각 4주째 $32.7{\pm}25%$, 8주째 $37.4{\pm}17%$였다. 골-임플란트 접촉(BIC)과 골밀도의 평균 비율(%)은 비슷하였다. 조직학적으로 자가골과 이종골 이식 부위 모두 주변골과 잘 조화를 이루었고 유사한 치유 양상이 관찰되었다. 자가골과 이종골 이식 부위간 유의한 차이는 없었다.(P>0.05) 결론 : 임플란트 주위 2 mm의 골 결손부위에 자가골 또는 이종골로 채운 경우 유사한 결과를 얻었다. 이 결과 임플란트 fixture 주위의 골 결손부 해소를 위해 자가골을 대체할 수 있는 재료로 $Biocera^{(R)}$를 사용할 수 있음을 보여준다.

Beyond the Molecular Facilitator, CD82: Roles in Metastasis Suppressor, Stem Cell Niche, Muscle Regeneration, and Angiogenesis (분자 촉진제를 넘어, CD82: 전이억제자, 줄기세포 니쉬, 근육 재생 및 혈관신생에서의 역할)

  • Lee, Hyun-Chae;Han, Jung-Hwa;Hur, Jin
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.856-861
    • /
    • 2021
  • CD82/KAI1, identified as a metastasis suppressor, was initially known only as a molecular facilitator, but its various functions have recently been revealed. CD82 plays an important role in the stem-progenitor cell, angiogenesis, and muscle. We would like to introduce the recently reported functions and roles of CD82 in this review. CD82 is a member of the tetraspanin family, which consists of four transmembrane domains. The interaction between CD82 and cell adhesion molecules suppresses the metastasis of cancer. CD82 regulates the cell cycle of stem-progenitor cells in the stem cell niche. In the bone marrow, CD82 is expressed on long-term repopulating hematopoietic stem cells (LT-HSCs), which show multipotent differentiation potential. The interaction between CD82 and Duffy antigen receptor for chemokines (DARC) induces quiescence in LT-HSCs. CD82 also regulates Rac1 activity, resulting in the homing and engraftment of HSCs into the bone marrow niche. Besides, CD82 maintains the differentiation potential of muscle stem cells and prevents angiogenesis by inhibiting the expression of cytokines, such as IL-6 and VEGF and adhesion molecules in endothelial cells. CD82 is a key membrane protein that distinguishes the hierarchy of stem-progenitor cells, and is also important for amplification and verification of cellular resources. Further studies on the function of CD82 in various organs and cells are expected to advance cell biology and cell therapy.

Adjuvant therapy with 1% alendronate gel for experimental periodontitis treatment in rats

  • de Campos Kajimoto, Natalia;de Paiva Buischi, Yvonne;Loomer, Peter Michael;Bromage, Timothy G.;Ervolino, Edilson;Fucini, Stephen Enrico;Pola, Natalia Marcumini;Pirovani, Beatriz Ommati;Morabito, Maria Juliana Sismeiro;de Almeida, Juliano Milanezi;Furlaneto, Flavia Aparecida Chaves;Nagata, Maria Jose Hitomi
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.6
    • /
    • pp.374-385
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate the effects of locally delivered 1% alendronate (ALN) gel used as an adjunct to non-invasive periodontal therapy. Methods: Ligature-induced periodontitis was performed in 96 rats. The ligature was tied in the cervical area of the mandibular left first molar. The animals were randomly divided into 4 groups: 1) NT, no treatment; 2) SRP, scaling and root planning; 3) SRP/PLA, SRP followed by filling the periodontal pocket with placebo gel (PLA); and 4) SRP/ALN, SRP followed by filling the periodontal pockets with 1% ALN gel. Histomorphometric (percentage of bone in the furcation region [PBF]) and immunohistochemical (receptor activator of nuclear factor-κB ligand, osteoprotegerin, and tartrate-resistant acid phosphatase) analyses were performed. Data were statistically analyzed, with the threshold of statistical significance set at P≤0.05. Results: The SRP, SRP/PLA, and SRP/ALN groups presented a higher PBF than the NT group (P≤0.01) at 7, 15, and 30 days. The SRP/ALN group presented a higher PBF than the SRP/PLA group in all experimental periods, as well as a higher PBF than the SRP group at 15 and 30 days. No differences were observed in the immunohistochemical analyses (P>0.05 for all). Conclusions: Locally delivered 1% ALN gel used as an adjunct to SRP enhanced bone regeneration in the furcation region in a rat model of experimental periodontitis.