• Title/Summary/Keyword: Bone Regeneration

Search Result 1,021, Processing Time 0.048 seconds

The factors related with the failure in GBR and GTR technique (차폐막을 이용한 치주조직 및 골조직 유도재생술의 실패요인에 대한 고찰)

  • Yeom, Hey-Ri;Ku, Young;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.1
    • /
    • pp.117-128
    • /
    • 1997
  • Using barrier membrane, guided bone regeneration(GBR) and guided tissue regeneration(GTR) of periodontal tissue are now widely studied and good results were reported. In bone regeneration, not all cases gained good results and in some cases using GTR, bone were less regenerated than that of control. The purpose of this study is to search for the method to improve the success rate of GBR and GTR by examination of the cause of the failure. For these study, rats and beagle dogs were used. In rat study, 5mm diameter round hole was made on parietal bone of the rat and 10mm diameter of bioresorbable membrane was placed on the bone defects and sutured. In 1 ,2, 4 weeks later, the rats were sacrificed and Masson-Trichrome staining was done and inspected under light microscope for guided bone regeneration. In dog study, $3{\times}4mm^2$ Grade III furcation defect was made at the 3rd and 1th premolar on mandible of 6 beagle dogs. The defects were covered by bioresorbable membrane extending 2-3mm from the defect margin. The membrane was sutured and buccal flap was covered the defect perfectly. In 2, 4. 8 weeks later. the animals were sacrificed and undecalcified specimens were made and stained by multiple staining method. In rats. there was much amount of new bone formation at 2 weeks. and in 4 weeks specimen, bony defect was perfectly dosed and plenty amount of new bone marrow was developed. In some cases, there were failures of guided bone regeneration. In beagle dogs, guided tissue regeneration was incomplete when the defect was collapsed by the membrane itself and when the rate of resorption was so rapid than expected. The cause of the failure in GBR and GTR procedure is that 1) the membrane was not tightly seal the bony defects. If the sealing was not perfect, fibrous connective tissue infiltrate into the defect and inhibit the new bone formation and regeneration. 2) the membrane was too tightly attached to the tissue and then there was no space to be regenerated. In conclusion, the requirements of the membrane for periodontal tissue and bone regeneration are the biocompatibility, degree of sealingness, malleability. space making and manipulation. In this animal study. space making for new bone and periodontal ligament, and sealing the space might be the most important point for successful accomplishment of GBR and GTR.

  • PDF

The Effects of various Regeneration techniques on Bone Regeneration around Dental Implant (수종의 재생 술식 시행이 매식체 근원심부의 골재생에 미치는 영향)

  • Lee, Myung-Ja;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.2
    • /
    • pp.383-399
    • /
    • 2005
  • The successful implantation necessitate tissue regeneration m site of future implant placement, there being severe bone defect. Therapeutic approaches to tissue regeneration in the site have used bone grafts, root surface treatments, barrier membranes, and growth factors, the same way being applied to periodontal tissue regeneration. Great interest in periodontal tissue regeneration has lead to research in bone graft, guided-tissue regeneration, and the administration of growth factors as possible means of regenerating lost periodontal tissue. The blood component separated by centrifuging the blood is the platelet-rich plasma. There are growth factors, PDGF, $TGF{beta}1$, $TGF{beta}2$ and IGF in the platelet-rich plasma. The purpose of this study was to study the histopathological correlation between the use of platelet-rich plasma and the healing of bone defect around implant fixture site. Implant fixtures were inserted and graft materials were placed into the left femur of in the experimental group, while the control group received only implant fixtures. In the first experimental group, platelet-rich plasma and BBP xenograft were placed at the implant fixture site, and the second experimental group had platelet-rich plasma, BBP xenograft, and the e-PTFE membrane placed at the fixture site. The degree of bone regeneration adjacent to the implant fixture was observed and compared histopathologically at 2, 4, and 8 weeks after implant fixture insertion. The results of the experiment were as follows: 1. Bone remodeling in acid etched surface near the implant fixture of all experimental groups was found to be greater than new bone formation. 2. Bone remodeling in acid etched surface distant to the implant fixture of all experimental groups was decreased and new bone formation was not changed. 3. Significant new bone formation in machined surface near the implant fixture of bothl experimental groups was observed in 2 weeks. 4. New bone formation in machined surface distant to the implant fixture of both experimental groups was observed. Bone remodeling was significant in near the implant fixture and not in distant to the implant fixture. The results of the experiment suggested that the change of bone formation around implant. Remodeling in machined surface distant to the implant fixture of both experimental groups, and new bone formation and remodeling near the implant fixture were significant.

AN EXPERIMENTAL STUDY OF GUIDED BONE REGENERATION OF BONE DEFECTS IN RABBIT USING RUBBER DAM (가토에서 러버댐을 이용한 골결손부의 골조직 유도 재생술에 관한 실험적 연구)

  • Jang, Chang-Dug;Whang, Hie-Seong;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.2
    • /
    • pp.110-119
    • /
    • 1999
  • The principle of guided tissue regeneration (GTR), as applied to bone healing, is based on the prevention of connective tissue from entering the bony defect during the healing phase. This allows the slower bone producing cells to migrate into and reproduce bone within the defect. The principle of guided tissue regeneration has demonstrated a level of success in regenerating bone defect. Several types of membrane barrier, each one with distinct properties, have been utilized to apply this principle in bone regeneration. The purpose of this study is to introduce and discuss the attributes of rubber dam as a barrier membrane and evaluate whether improved bone regeneration can be achieved by GTR using rubber dam. In the 15 New Zealand white rabbits, full-thickness bone defects on three sites of each rabbit calvaria were made. Non membrane group served as a control and experimental group 1 was covered with rubber dam and group 2 covered with Gore-Tex$^{TM}$ membrane. Macroscopic, radiographic, microscopic examinations were made serially on 1, 2, 3, 6, 12 weeks after operation. The results were as follows: 1. Macroscopically, the control site was collapsed and filled with connective tissue throughout the experimental period. But the defects of experimental groups 1 and 2 were filled with bone-like mass and showed the hard consistency on palpation. 2. Radiographically, the early new bone formation appeared similarly from the host bone in groups 1 and 2. 3. Microscopically, there were much connective tissue at the central part of control site but the defect of group 1 and 2 was filled with the mature bony trabeculae on the 12th week. This results suggest that rubber dam can be effectively used as a barrier membrane for guided bone regeneration.

  • PDF

The effects of newly formed synthetic peptide on bone regeneration in rat calvarial defects

  • Choi, Jung-Yoo;Jung, Ui-Won;Kim, Chang-Sung;Eom, Tae-Kwan;Kang, Eun-Jung;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • Purpose: Significant interest has emerged in the design of cell scaffolds that incorporate peptide sequences that correspond to known signaling domains in extracellular matrix and bone morphogenetic protein. The purpose of this study was to evaluate the bone regenerative effects of the synthetic peptide in a critical-size rat calvarial defect model. Methods: Eight millimeter diameter standardized, circular, transosseus defects created on the cranium of forty rats were implanted with synthetic peptide, collagen, or both synthetic peptide and collagen. No material was was implanted the control group. The healing of each group was evaluated histologically and histomorphometrically after 2- and 8-week healing intervals. Results: Surgical implantation of the synthetic peptide and collagen resulted in enhanced local bone formation at both 2 and 8 weeks compared to the control group. When the experimental groups were compared to each other, they showed a similar pattern of bone formation. The defect closure and new bone area were significantly different in synthetic peptide and collagen group at 8 weeks. Conclusions: Concerning the advantages of biomaterials, synthetic peptide can be an effective biomaterial for damaged periodontal regeneration.

Investigation of bone formation using calcium phosphate glass cement in beagle dogs

  • Lee, Seung-Bum;Jung, Ui-Won;Choi, Youn-A;Jamiyandorj, Otgonbold;Kim, Chang-Sung;Lee, Yong-Keun;Chai, Jung-Kiu;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.3
    • /
    • pp.125-131
    • /
    • 2010
  • Purpose: Among available biomaterials, bioceramics have drawn special interest due to their bioactivity and the possibility of tailoring their composition. The degradation rate and formulation of bioceramics can be altered to mimic the compositions of the mineral phase of bone. The aim of this study was to investigate the bone formation effect of amorphous calcium phosphate glass cement (CPGC) synthesized by a melting and quenching process. Methods: In five male beagle dogs, $4{\times}4$ mm 1-wall intrabony defects were created bilaterally at the mesial or distal aspect of the mandibular second and fourth premolars. Each of the four defects was divided according to graft materials: CPGC with collagen membrane (CM), biphasic calcium phosphate (BCP) with CM, CM alone, or a surgical flap operation only. The dogs were sacrificed 8 weeks post-surgery, and block sections of the defects were collected for histologic and histometric analysis. Results: There were significant differences in bone formation and cementum regeneration between the experimental and control groups. In particular, the CPGC and BCP groups showed greater bone formation than the CM and control groups. Conclusions: In conclusion, CPGC was replaced rapidly with an abundant volume of new bone; CPGC also contributed slightly to regeneration of the periodontal apparatus.

Combined effects of a chemically cross-linked porcine collagen membrane and highly soluble biphasic calcium phosphate on localized bone regeneration

  • Kim, You-Kyoung;An, Yin-Zhe;Cha, Jae-Kook;Lee, Jung-Seok;Jung, Ui-Won;Choi, Seong-Ho
    • The Journal of the Korean dental association
    • /
    • v.56 no.12
    • /
    • pp.667-685
    • /
    • 2018
  • Objectives: Aim of this study was to evaluate bone regenerative efficacy of a chemically cross-linked porcine collagen membrane (CM) when used in combination with highly soluble biphasic calcium phosphate (BCP). Materials and methods: Physiochemical properties of the experimental collagen membrane were analyzed. Four circumferential defects with diameter of 8 mm were created in each calvarium of New Zealand white rabbits (n = 10). Defects were randomly allocated to one of following 4 groups: 1) BCP-CM (BCP (20% hydroxyapatite/80% ${\beta}$-tricalcium phosphate) covered with the prepared collagen membrane), 2) BCP (only BCP used), 3) CM (only the prepared collagen membrane used), and 4) C (control; only blood clot). After 2 weeks (n = 5) and 8 weeks (n = 5), histologic and histomorphometric analyses were performed. Results: The experimental collagen membrane exhibited dense and compact structure, relatively high tensile strength and lower degradability. Histologic analyses revealed that new bone increased rapidly at 2 weeks, while defect was preserved at 8 weeks. Histomorphometric analyses revealed that the new bone areas increased in the BCP-grafted groups over 8 weeks, with BCP-CM exhibiting greater total augmented area than that of BCP group both at 2 weeks ($27.12{\pm}3.99$ versus $21.97{\pm}2.27mm^2$) and 8 weeks ($25.75{\pm}1.82$ versus $22.48{\pm}1.10mm^2$) (P < 0.05). Conclusions: The experimental collagen membrane successfully preserved localized defect for 8 weeks despite early rapid resorption of BCP. Within the study limitations, combined use of the chemically cross-linked porcine collagen membrane and highly soluble BCP aided localized bone regeneration.

  • PDF

A Comparative Study of the effects of Autogenous and Xenogenic Bone grafts with PRP(Platelet Rich Plasma) technique on Periodontal Regeneration (혈소판 농축 혈장과 혼합된 자가골 및 이종골 이식재가 치주 조직의 재생에 미치는 효과)

  • Kim, Dong-Gi;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.499-508
    • /
    • 2004
  • Regeneration of Periodontium with PRP does not only improve regeneration rate and density of bone but have a possibility to estimate faster healing process for soft tissue. And also, autogenous bone and xenogenic bone graft are effective on regeneration of periodontium. The purpose of this study is to evaluate the effectiveness of autogenous bone and xenogenic bone $(BBP^{(R)})$ grafts with the PRP technique on regeneration of periodontium. 52 Generally healthy Pt. who had pocket depth 5mm at any of 6 surfaces of the teeth were in the study at Dept. of Perio. in Dankook Dental Hospital. Open Flap was treated for 18 infra-bony pockets as control group, autogenous bone with PRP was inserted for 25 infrabony pockets as first test group, and $(BBP^{(R)})$ with PRP was inserted for 22 infrabony pockets as 2nd test group. Then evaluation was made after 3 and 6 months 1. There were significant differences between average probing pocket depth and clinical attachment level of 3, 6 months and minimal and maximal attachment level after 6 months each other. 2. There were significant differences in average probing pocket depth of control group and 2nd experimental group between 1 and 6 months. For clinical attachment level and minimal and maximal proving attachment level, there was a significant difference after 6 month of surgery. 3. There was no significant difference between two test groups for average probing depth, clinical attachment level, and minimal and maximal probing attachment level. As the result, PRP with bone graft could be very effective for regeneration of periodontium and there was no difference between xenogenic bone and autogenous bone.

AN EXPERIMENTAL STUDY ON THE EFFECT OF CALCIUM SULFATE ON BONE REGENERATION (치과용 연석고가 골조직재생에 미치는 영향에 관한 실험적 연구)

  • Choi, Jang-Woo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.20 no.3
    • /
    • pp.217-227
    • /
    • 1998
  • Calcium sulfate(plaster of Paris) has been used in dental and orthopedic surgery for about 100 years. It is well known that the plaster is bioresorbable, biocompatible, defect conformable and moldable. The purpose of this study is to evaluate two effects of calcium sulfate on bone regeneration, that is, the effects of graft materials and barrier for bone regeneration. Cortical bone defects were formed for recipient site on the femurs of 19 Sprague-Dawley rats. The autogenous particulated bone and calcium sulfate were grafted to the defects. Calcium sulfate paste, $Gore-Tex^R$ membrane(W.L. GORE & ASSOCIATES LTD., U.S.A.) and rubber sheet were used for the shielding materials. The results were as follows : 1. Calcium sulfate that had been grafted in the cortical bone defect was almost resorbed before bone remodeling, resultantly had little effect on bone regeneration. 2. Resoption process of calcium sulfate grafted on the bone grafting area tends to be accelerated, as being divided into numerous small particles progressively. Under the situation where the calcium sulfate was protected, with the coverage of fascia, $Gore-Tex^R$ membrane or rubber sheet, new bone formation was confirmed with presence of calcium sulfate particles over 6 weeks after grafting. 3. In the case of calcium sulfate covered with membrane, distinct bone formation was observed on the marrow space of femur adjacent to the plaster mass. 4. Rubber shielded plaster group revealed new bone trabeculae under the rubber sheet, but it showed ischemic degeneration of superficial cortical bone.

  • PDF

Effect of Enamel Matrix Derivative on Guided Bone Regeneration with Intramarrow Penetration (골수내천공을 동반한 골유도재생술시 법랑기질유도체의 효과)

  • Lee, Young-Jong;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.393-410
    • /
    • 2004
  • The purpose of this study was to investigate effect of enamel matrix derivative on guided bone regeneration with intramarrow penetration in rabbits. Eight adult male rabbits (mean BW 2Kg) were used in this study. Intramarrow penetration defects were surgically created with round carbide bur(HP long #6) on calvaria of rabbits. Defects were assigned to the control group grafted with mixture of the same quantity of demineralized freeze-dried bone allograft and deproteinized bovine bone mineral. Then, guided bone regeneration was carried out using resorbable membrane and suture. Enamel matrix derivative applied to defects was assigned to the test group. And treated as same manners as the control group. At 1, 2, 3 and 8 weeks after the surgery, animals were sacrificed, specimens were obtained and stained with Hematoxylin-Eosin for light microscopic evaluation. The results of this study were as follows : 1. At 1, 2 and 3 weeks, no differences were observed between the control group and the test group in the aspect of bone formation around bone graft. 2. Proliferation of blood capillary was faster in the test group than in the control group. 3. Bone regeneration in intramarrow penetration was faster in the test group than in the control group. 4. At 8 weeks, new osteoid tissue formation around bone graft was more prominent in the test group than in the control group. From the above results, enamel matrix derivative might be considered as the osteopromotion material and effective in the guided bone regeneration with intramarrow penetration.

The Effects of Tetracycline-loaded Silk Fibroin Membrane on Guided Bone Regeneration in a Rabbit Calvarial Defect Model (가토 두개골 결손부 모델에서 테트라사이클린 함유 실크 파이브로인 차폐막의 골유도 재생 효과)

  • Lee, Sang-Woon;Park, Yong-Tae;Kim, Seong-Gon;Kweon, HaeYong;Jo, You-Young;Lee, Heui Sam
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.5
    • /
    • pp.293-298
    • /
    • 2012
  • Purpose: The aim of this study was to evaluate the bone regeneration ability of 1% tetracycline (TC)-loaded silk fibroin membrane (SFM), in a rabbit calvarial defect model. Methods: Twenty New Zealand white rabbits were used for this study. Bilateral round defects were made on the rabbit parietal bone, using trephine bur with an 8 mm diameter. TC-loaded SFM or SFM was covered on the right parietal bone defect, and the left parietal bone defects were uncovered for the control. The animals were humanely sacrificed at 4 or 8 weeks postoperatively. A micro-computerized tomography (${\mu}$-CT) of each specimen was taken for analysis of bone regeneration. Hematoxylin and Eosin stain were done to observe histological findings. Results: From the ${\mu}$-CT results, regenerated bone volume ($mm^3$) of 1% TC-loaded SFM, SFM, and control were $7.80{\pm}5.87$, $8.79{\pm}3.44$, and $10.61{\pm}5.3$ at 4 weeks postoperatively, respectively (P>0.05). Regenerated bone volume ($mm^3$) of 1% TC-loaded SFM, SFM, and control were $36.56{\pm}8.50$, $25.86{\pm}8.17$, and $19.09{\pm}5.07$ at 8 weeks postoperatively, respectively (P<0.05). Conclusion: The 1% TC-loaded SFM showed more bone regeneration than the SFM and the uncovered control, in guided bone regeneration.