• Title/Summary/Keyword: Bone Implant Contact

Search Result 257, Processing Time 0.022 seconds

What is the effect of initial implant position on the crestal bone level in flap and flapless technique during healing period?

  • Al-Juboori, Mohammed Jasim;Ab Rahman, Shaifulizan;Hassan, Akram;Ismail, Ikmal Hisham Bin;Tawfiq, Omar Farouq
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.4
    • /
    • pp.153-159
    • /
    • 2013
  • Purpose: The level of the implant above the marginal bone and flap design have an effect on the bone resorption during the healing period. The aim of this study is to detect the relationship between the level of the implant at the implant placement and the bone level at the healing period in the mesial and distal side of implants placed with flapless (FL) and full-thickness flap (FT) methods. Methods: Twenty-two nonsubmerged implants were placed with the FL and FT technique. Periapical radiographs were taken of the patient at implant placement, and at 6 and 12 weeks. By using computer software, bone level measurements were taken from the shoulder of the healing cap to the first bone implant contact in the mesial and distal side of the implant surface. Results: At 6 weeks, the correlation between the crestal bone level at the implant placement and crestal bone level of the FT mesially was significant (Pearson correlation coefficient=0.675, P<0.023). At 12 weeks, in the FT mesially, the correlation was nonsignificant (Spearman correlation coefficient=0.297, P<0.346). At 6 weeks in the FT distally, the correlation was nonsignificant (Pearson correlation coefficient=0.512, P<0.107). At 12 weeks in the FT distally, the correlation was significant (Spearman correlation coefficient=0.730, P<0.011). At 6 weeks in the FL mesially, the correlation was nonsignificant (Spearman correlation coefficient=0.083, P<0.809). At 12 weeks in the FL mesially, the correlation was nonsignificant (Spearman correlation coefficient= 0.062, P<0.856). At 6 weeks in the FL distally, the correlation was nonsignificant (Spearman correlation coefficient=0.197, P<0.562). At 12 weeks in the FL distally, the correlation was significant (Pearson correlation coefficient=0.692, P<0.018). Conclusions: A larger sample size is recommended to verify the conclusions in this preliminary study. The bone level during the healing period in the FT was more positively correlated with the implant level at implant placement than in the FL.

Histomorphometric evaluation of the bone surrounding orthodontic miniscrews according to their adjacent root proximity

  • Oh, Hyun-Ju;Cha, Jung-Yul;Yu, Hyung-Seog;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.48 no.5
    • /
    • pp.283-291
    • /
    • 2018
  • Objective: This study was conducted to perform histomorphometric evaluations of the bone surrounding orthodontic miniscrews according to their proximity to the adjacent tooth roots in the posterior mandible of beagle dogs. Methods: Four male beagle dogs were used for this study. Six orthodontic miniscrews were placed in the interradicular spaces in the posterior mandible of each dog (n = 24). The implanted miniscrews were classified into no loading, immediate loading, and delayed loading groups according to the loading time. At 6 weeks after screw placement, the animals were sacrificed, and tissue blocks including the miniscrews were harvested for histological examinations. After analysis of the histological sections, the miniscrews were categorized into three additional groups according to the root proximity: high root proximity, low root proximity, and safe distance groups. Differences in the bone-implant contact (BIC, %) among the root proximity groups and loading time groups were determined using statistical analyses. Results: No BIC was observed within the bundle bone invaded by the miniscrew threads. Narrowing of the periodontal ligament space was observed in cases where the miniscrew threads touched the bundle bone. BIC (%) was significantly lower in the high root proximity group than in the low root proximity and safe distance groups. However, BIC (%) showed no significant differences among the loading time groups. Conclusions: Regardless of the loading time, the stability of an orthodontic miniscrew is decreased if it is in contact with the bundle bone as well as the adjacent tooth root.

EFFECT OF VARIOUS INODIZING CHARACTERISTICS ON BONE INTEGRATION OF TITANIUM IMPLANT SURFACE DESIGN (다양한 양극산화막 처리방법이 임프란트 골유착에 미치는 영향)

  • Cha, Soo-Ryun;Lee, Jun;Min, Seung-Ki
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.5
    • /
    • pp.417-427
    • /
    • 2008
  • The aim of this study is to investigate the effect of anodizing surface to osseointegration of implant by using of resonance frequency analysis (RFA), quantitative and qualitative assessment of an anodically modified implant type with regard to osseous healing qualities. A total of 96 screw-shaped implants were prepared for this study. 72 implants were prepared by electrochemical oxidation with different ways. 24 (group 1 SP) were prepared at galvanostatic mode in 0.25M sulfuric acid and phosphoric acid. 24 (group 2GC) were prepared at galvanostatic mode in calcium glycerophosphate and calcium acetate and 24 (group 3 CMP (Calcium Metaphosphate) Coating were prepared at galvanostatic mode in 0.25M sulfuric acid and phosphoric acid followed by CMP coating. Rest of 24 (control group were as a control group of RBM surface. Bone tissue responses were evaluated by resonance frequency analysis (RFA) that were undertaken at 2, 4 and 6 weeks after implant placement in the mandible of mini-pig. Group 1 SP (anodized with sulfuric acid and phosphoric acid implants) demonstrated slightly stronger bone responses than control Group RBM. Group 2 GC (anodized surface with calcium glycerophosphate and calcium acetate implants) demonstrated no difference which were compared with control group. Group 3 GMP (anodized and CMP coated implants) demonstrated slightly stronger and faster bone responses than any other implants. But, all observation result of RF A showed no significant differences between experimental groups with various surface type. Histomorphometric evaluation demonstrated significantly higher bone-to-implant contact for group 2 GC. Significantly more bone formation was found inside threaded area for group 2 GC. It was concluded that group 2 GC (anodized surface with calcium glycerophosphate and calcium acetate implants) showed more effects on the bone tissue responses than RBM surface in initial period of implantation. In addition, CMP showed a tendency to promote bone tissue responses.

An analysis on the factors responsible for relative position of interproximal papilla in healthy subjects

  • Kim, Joo-Hee;Cho, Yun-Jung;Lee, Ju-Youn;Kim, Sung-Jo;Choi, Jeom-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.4
    • /
    • pp.160-167
    • /
    • 2013
  • Purpose: This study examined the factors that can be associated with the appearance of the interproximal papilla. Methods: One hundred and forty-seven healthy interproximal papillae between the maxillary central incisors were examined. For each subject, a digital photograph and periapical radiograph of the interdental embrasure were taken using a 1-mm grid metal piece. The following parameters were recorded: the amount of recession of the interproximal papilla, contact point-bone crest distance, contact point-cemento-enamel junction (CEJ) distance, CEJ-bone crest distance, inter-radicular distance, tooth shape, embrasure space size, interproximal contact area, gingival biotype, papilla height, and papilla tip form. Results: The amount of recession of the interproximal papilla was associated with the following: 1) increase in contact point-bone crest, contact point-CEJ, and CEJ-bone crest distance; 2) increase in the inter-radicular distance; 3) triangular tooth shape; 4) decrease in the interproximal contact area length; 5) increase in the embrasure space size; and 6) flat papilla tip form. On the other hand, the amount of gingival recession was not associated with the gingival biotype or papilla height. In the triangular tooth shape, the contact point-bone crest distance and inter-radicular distance were longer, the interproximal contact area length was shorter, and the embrasure space size was larger. The papilla tip form became flatter with increasing inter-radicular distance and CEJ-bone crest distance. Conclusions: The relative position of the interproximal papilla in healthy subjects was associated with the multiple factors and each factor was related to the others. A triangular tooth shape carries a higher risk of recession of the interproximal papilla because the proximal contact point is positioned more incisally and the bone crest is positioned more apically. This results in an increase in recession of the interproximal papilla and flat papilla tip form.

Stress Analysis on the Splinted Conditions of the Two Implant Crowns with the Different Vertical Bone Level (치조골 높이가 다른 2개 임플란트 금관의 고정연결 조건에 따른 응력분석)

  • Jeon, Chang-Sik;Jeong, Sin-Young;Kang, Dong-Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.169-182
    • /
    • 2005
  • The purpose of this study was to compare the stress distribution around the surrounding bone according to the splinted and non-splinted conditions on the finite element models of the two implant crowns with the different vertical bone level. The finite element model was designed with the parallel placement of the two fixtures ($4.0mm{\times}11.5mm$) with reverse buttress thread on the mandibular 1st and 2nd molars. As the bone quality, the inner cancellous bone and the outer 2 mm cortical bone were designed, and the cortical and cancellous bone were assumed to be perfectly bonded to the implant fixture. The splinted model(Model 1) had 2 mm contact surface and the non-splinted model(Model 2) had $8{\mu}m$ gap between two implant crowns. Two group (Splinted and non-splinted) was loaded with 200 N magnitude in the vertical and oblique directions on the loading point position on the central position of the crown, the 2 mm and 4 mm buccal offset point from the central position. Von Mises stress value was recorded and compared in the fixture-bone interface in the bucco-lingual and mesio-distal sections. The results were as follows; 1. In the vertical loading condition of central position, the stress was distributed on the cortical bone and the cancellous bone around the thread of the fixture in the splinted and non-splinted models. In the oblique loading condition, the stress was concentrated toward the cortical bone of the fixture neck, and the neck portion of 2nd molar in the non-splinted model was concentrated higher than that of 1st molar compared to the splinted model. 2. In the 2 mm buccal offset position of the vertical loading compared to the central vertical loading, stress pattern was shifted from apical third portion of the fixture to upper third portion of that. In the oblique loading condition, the stress was distributed over the fixture-bone interface. 3. In the 4 mm buccal offset position of the vertical loading, stress pattern was concentrated on the cortical bone around the buccal side of the fixture thread and shifted from apical third portion of the fixture to upper third portion of that in the splinted and non-splinted models. In the oblique loading, stresses pattern was distributed to the outer position of the neck portion of the fixture thread on the mesio-distal section in the splinted and non-splinted models. Above the results, it was concluded that the direction of loading condition was a key factor to effect the pattern and magnitude of stress over the surrounding bone of the fixture under the vertical and oblique loading conditions, although the type with or without proximal contact did not effect to the stress distribution.

Comparative analysis of the in vivo kinetic properties of various bone substitutes filled into a peri-implant canine defect model

  • Jingyang Kang;Masaki Shibasaki;Masahiko Terauchi;Narumi Oshibe;Katsuya Hyodo;Eriko Marukawa
    • Journal of Periodontal and Implant Science
    • /
    • v.54 no.2
    • /
    • pp.96-107
    • /
    • 2024
  • Purpose: Deproteinized bovine bone or synthetic hydroxyapatite are 2 prevalent bone grafting materials used in the clinical treatment of peri-implant bone defects. However, the differences in bone formation among these materials remain unclear. This study evaluated osteogenesis kinetics in peri-implant defects using 2 types of deproteinized bovine bone (Bio-Oss® and Bio-Oss/Collagen®) and 2 types of synthetic hydroxyapatite (Apaceram-AX® and Refit®). We considered factors including newly generated bone volume; bone, osteoid, and material occupancy; and bone-to-implant contact. Methods: A beagle model with a mandibular defect was created by extracting the bilateral mandibular third and fourth premolars. Simultaneously, an implant was inserted into the defect, and the space between the implant and the surrounding bone walls was filled with Bio-Oss, Bio-Oss/Collagen, Apaceram-AX, Refit, or autologous bone. Micro-computed tomography and histological analyses were conducted at 3 and 6 months postoperatively (Refit and autologous bone were not included at the 6-month time point due to their rapid absorption). Results: All materials demonstrated excellent biocompatibility and osteoconductivity. At 3 months, Bio-Oss and Apaceram-AX exhibited significantly greater volumes of formation than the other materials, with Bio-Oss having a marginally higher amount. However, this outcome was reversed at 6 months, with no significant difference between the 2 materials at either time point. Apaceram-AX displayed notably slower bioresorption and the largest quantity of residual material at both time points. In contrast, Refit had significantly greater bioresorption, with complete resorption and rapid maturation involving cortical bone formation at the crest at 3 months, Refit demonstrated the highest mineralized tissue and osteoid occupancy after 3 months, albeit without statistical significance. Conclusions: Overall, the materials demonstrated varying post-implantation behaviors in vivo. Thus, in a clinical setting, both the properties of these materials and the specific conditions of the defects needing reinforcement should be considered to identify the most suitable material.

THE EFFECT OF SURFACE TREATMENT OF THE CERVICAL AREA OF IMPLANT ON BONE REGENERATION IN MINI-PIG (미니돼지에서 발치 후 즉시 임플란트 매식시 치경부 표면처리가 골재생에 미치는 효과)

  • Cho, Jin-Yong;Kim, Young-Jun;Yu, Min-Gi;Kook, Min-Suk;Oh, Hee-Kyun;Park, Hong-Ju
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.3
    • /
    • pp.285-292
    • /
    • 2008
  • Purpose: The present study was performed to evaluate the effect of surface treatment of the cervical area of implant on bone regeneration in fresh extraction socket following implant installation. Materials and methods: The four minipigs, 18 months old and 30 kg weighted, were used. Four premolars of the left side of both the mandible and maxilla were extracted. ${\phi}$3.3 mm and 11.5 mm long US II plus implants (Osstem Implant co., Korea) with resorbable blasting media (RBM) treated surface and US II implants (Osstem Implant co., Korea) with machined surface at the top and RBM surface at lower portion were installed in the socket. Stability of the implant was measured with $Osstell^{TM}$ (Model 6 Resonance Frequency Analyser: Integration Diagnostics Ltd., Sweden). After 2 months of healing, the procedures and measurement of implant stability were repeated in the right side by same method of left side. At four months after first experiment, the animals were sacrificed after measurement of stability of all implants, and biopsies were obtained. Results: Well healed soft tissue and no mobility of the implants were observed in both groups. Histologically satisfactory osseointegration of implants was observed with RBM surface, and no foreign body reaction as well as inflammatory infiltration around implant were found. Furthermore, substantial bone formation and high degree of osseointegration were exhibited at the marginal defects around the cervical area of US II plus implants. However, healing of US II implants was characterized by the incomplete bone substitution and the presence of the connective tissue zone between the implant and newly formed bone. The distance between the implant platform (P) and the most coronal level of bone-to-implant contact (B) after 2 months of healing was $2.66{\pm}0.11$ mm at US II implants group and $1.80{\pm}0.13$mm at US II plus implant group. The P-B distance after 4 months of healing was $2.29{\pm}0.13$mm at US II implants group and $1.25{\pm}0.10$mm at US II plus implants group. The difference between both groups regarding the length of P-B distance was statistically significant(p<0.05). Concerning the resonance frequency analysis (RFA) value, the stability of US II plus implants group showed relatively higher RFA value than US II implants group. Conclusion: The current results suggest that implants with rough surface at the cervical area have an advantage in process of bone regeneration on defect around implant placed in a fresh extraction socket.

Application of low-crystalline carbonate apatite granules in 2-stage sinus floor augmentation: a prospective clinical trial and histomorphometric evaluation

  • Nakagawa, Takayuki;Kudoh, Keiko;Fukuda, Naoyuki;Kasugai, Shohei;Tachikawa, Noriko;Koyano, Kiyoshi;Matsushita, Yasuyuki;Sasaki, Masanori;Ishikawa, Kunio;Miyamoto, Youji
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.6
    • /
    • pp.382-396
    • /
    • 2019
  • Purpose: The purpose of this study was to elucidate the efficacy and safety of carbonate apatite (CO3Ap) granules in 2-stage sinus floor augmentation through the radiographic and histomorphometric assessment of bone biopsy specimens. Methods: Two-stage sinus floor augmentation was performed on 13 patients with a total of 17 implants. Radiographic assessment using panoramic radiographs was performed immediately after augmentation and was also performed 2 additional times, at 7±2 months and 18±2 months post-augmentation, respectively. Bone biopsy specimens taken from planned implant placement sites underwent micro-computed tomography, after which histological sections were prepared. Results: Postoperative healing of the sinus floor augmentation was uneventful in all cases. The mean preoperative residual bone height was 3.5±1.3 mm, and this was increased to 13.3±1.7 mm by augmentation with the CO3Ap granules. The mean height of the augmented site had decreased to 10.7±1.9 mm by 7±2 months after augmentation; however, implants with lengths in the range of 6.5 to 11.5 mm could still be placed. The mean height of the augmented site had decreased to 9.6±1.4 mm by 18±2 months post-augmentation. No implant failure or complications were observed. Few inflammatory cells or foreign body giant cells were observed in the bone biopsy specimens. Although there were individual differences in the amount of new bone detected, new bone was observed to be in direct contact with the CO3Ap granules in all cases, without an intermediate layer of fibrous tissue. The amounts of bone and residual CO3Ap were 33.8%±15.1% and 15.3%±11.9%, respectively. Conclusions: In this first demonstration, low-crystalline CO3Ap granules showed excellent biocompatibility, and bone biopsy showed them to be replaced with bone in humans. CO3Ap granules are a useful and safe bone substitute for two-stage sinus floor augmentation.

Histomorphometric Analysis on Bone Formation Effect of Beta-tricalciumphosphate around Dental Implants in Rabbit Mandibular Body: Pilot Study (토끼의 하악골체부에 식립된 임플란트 주위에서 Beta-tricalciumphosphate 골이식재의 골형성효과에 대한 조직계측학적 연구)

  • Pyun, Young-Hoon;Kim, Il-Kyu;Cho, Hyun-Young;Ju, Sang-Hyun;Jung, Bum-Sang;Pae, Sang-Pill;Cho, Hyun-Woo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.5
    • /
    • pp.294-301
    • /
    • 2013
  • Purpose: The purpose of this study is to assess the effectiveness of beta-tricalciumphosphate (${\beta}$-TCP) as a bone graft material on new bone formation and regeneration of mandible bone defect around dental implants. Methods: Both mandibular sites of ten rabbits were exposed. The experimental subjects were divided into two groups. Rabbits in the control group (right site of the mandible) had dental implants around cortical bone defects, without treatment, while, in the experimental group (left site of the mandible), ${\beta}$-TCP was grafted into the bone defect around the implant. Rabbits were sacrificed after one, two, three, four, and eight weeks, and histomorphometric evaluation and analysis of the bone implant contact rate were performed using an optical microscope. Results: Bone formation rates in the experimental group were greater than those in the control group from one to eight weeks, and percentages of implant surface contacted to bone were greater in the experimental group than in the control group from three weeks after implantation. Conclusion: These results suggest that the bone formation activity around dental implants was increased by osteoconduction activity of ${\beta}$-TCP.

The effects of high-fat diet on implant osseointegration: an experimental study

  • Dundar, Serkan;Yaman, Ferhan;Ozupek, Muhammed Fatih;Saybak, Arif;Gul, Mehmet;Asutay, Fatih;Kirtay, Mustafa;Ozercan, Ibrahim Hanifi
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.4
    • /
    • pp.187-192
    • /
    • 2016
  • Objectives: In this study, we investigated whether a high-fat diet (HFD) affected the bone implant connection (BIC) in peri-implant bone. Materials and Methods: Four male rabbits were used in this study. Dental implant surgery was introduced into each tibia, and four implants were integrated into each animal. In both the normal diet (ND) group (n=2) and HFD group (n=2), 8 implants were integrated, for a total of 16 integrated implants. The animals continued with their respective diets for 12 weeks post-surgery. Afterward, the rabbits were sacrificed, and the BIC was assessed histomorphometrically. Results: Histologic and histomorphometric analyses demonstrated that BIC was not impaired in the HFD group compared to the ND group. Conclusion: Within the limitations of this study, we found that HFD did not decrease the BIC in rabbit tibias.