• Title/Summary/Keyword: Bone Formation Markers

Search Result 77, Processing Time 0.021 seconds

Nectandrin A Enhances the BMP-Induced Osteoblastic Differentiation and Mineralization by Activation of p38 MAPK-Smad Signaling Pathway

  • Kim, Do Yeon;Kim, Go Woon;Chung, Sung Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.5
    • /
    • pp.447-453
    • /
    • 2013
  • Osteoblastic activity of nectandrin A was examined in C2C12 cells. Nectandrin A enhances the BMP-induced osteoblastic differentiation and mineralization, manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and increased calcium contents. In C2C12 cells co-transfected with expression vector encoding Smad4 and Id1-Luc reporter, nectandrin A increased Id1 luciferase activity in a concentration-dependent manner, when compared to that in BMP-2 treated cells, indicating that Smad signaling pathway is associated with nectandrin A-enhanced osteoblastic differentiation in C2C12 cells. In addition, nectandrin A activated p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and phosphorylated form of pSmad1/5/8 and alkaline phosphatase activity were both decreased when the cells were pretreated with SB203580, a p38 MAPK inhibitor, suggesting that p38 MAPK might be an upstream kinase for Smad signaling pathway. Taken together, nectandrin A enhances the BMP-induced osteoblastic differentiation and mineralization of C2C12 cells via activation of p38 MAPK-Smad signaling pathway, and it has a therapeutic potential for osteoporosis by promoting bone formation.

THE EFFECT OF PDGF-BB AND IGF-I COMBINATION ON THE HEALING OF ARTIFICIAL PERIAPICAL LESIONS IN BEAGLE DOGS (PDGF-BB와 IGF-I 혼합 투여가 비글견 인공 치근단 병소의 치유에 미치는 영향에 관한 연구)

  • Kim, Mi-Ri;Kim, Min-Kyum;Yoon, Soo-Han
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 2000
  • It is difficult to treat the endodontic apical perforation successfully. In this study, we hypothesized that the application of PDGF-BB and IGF-I into periapical perforation site may accelerate periapical healing and lead to bone deposition. And the specificity of osteonectin in periapical healing was investigated. The experiments were performed on the upper and lower 51 premolar teeth of 4 beagle dogs. The pulp chamber of each tooth was opened and the dental plaque was inserted into the canal for developing the periapical lesion for 5 weeks. Then, the roots were artificially perforated at the apex with the number 4 profile of .06 taper. In each step, standard periapical radiographs were taken to compare the size of lesion each other. The radiographs were scanned and analyzed by image analysis system. The mean and standard deviation of periradicular radiolucency ratios were calculated in each group. ANOVA was used for comparison. 51 premolars were grouped into 3 groups; control group, calcium hydroxide-treated group and calcium hydroxide plus growth factors-treated group. In the control group, the apical perforations were not sealed and obturated with gutta-percha and ZOE sealer by lateral condensation technique. In the experimental groups, the apical perforation were sealed with calcium hydroxide and with/without $4{\mu}g$ of PDGF-BB & IGF-I in cellulose gel and obturated by lateral condensation technique. Fluorescent bone markers were used to measure new bone formation. Following 2, 4, 12 weeks after experiment the dogs were sacrificed and histologic sections were prepared. Each tooth block including periapical lesion was sectioned mesiodistally. One half of the sections were decalcified with 6% nitric acid and processed by standard paraffin embedding technique. The sections were stained by hematoxylin and eosin, and immunostained for osteonectin. Histomorphometrical measurement of neoformed bone was performed using a light microscope. And the other half of the sections were prepared by undecalcified preparation, and confocal laser scanning microscopic investigations were done.

  • PDF

Effects of Acute Lymphoblastic Leukemia on Ceruloplasmin Oxidase, Copper and Several Markers of Oxidative Damage, in Children

  • Mehdi, Wesen Adel;Yusof, Faridah;Mehde, Atheer Awad;Zainulabdeen, Jwan Abdulmohsin;Raus, Raha Ahmed;Abdulbari, Alaa Shawqi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5205-5210
    • /
    • 2015
  • Background: Acute leukaemia is characterized by fast growth of abnormal clones of haemopoietic precursor cells inside bone marrow leading to undue accumulation in the bone marrow. Acute lymphoblastic leukemia (ALL) is the most common form of childhood cancer. Materials and Methods: The study concerned 50 children diagnosed with ALL (mean age, $8.55{\pm}2.54$) compared to 40 healthy controls (mean age, $8.00{\pm}1.85$). The Hb, serum copper, ceruloplasmin oxidase, advanced oxidation protein products (AOPPs), total antioxidant activity (TAA) and protein were measured in all groups.One proteinous component was isolated by gel filtration chromatography from the precipitate produced by polyethylene glycol. Results: Significantly higher levels of AOPP, copper and decrease in total antioxidant activity were noted in the cases. Statistical analysis also showed a significant increase (p<0.01) in the activity of serum ceruloplasmin oxidase in patients with ALL compared to normal subjects .The maximum velocity (Vmax) and Michaelis constant had values of 104.2 U/L and 11.7 mM, respectively. The ${\Delta}H^*$ values for ceruloplasmin oxidase in ALL patients were positive, confirming the reaction to be endothermic. Conclusions: The results from this study showed a significant increase in AOPP, ceruloplasmine oxidase and decrease in total antioxidant activity .These parameters may play a role in development of DNA damage in childhood patients with acute lymphoblastic leukemia (ALL).The ${\Delta}S^*$ and ${\Delta}G^*$ values were negative, these refer that the reaction of ES formation is spontaneous, but needs energy in a so-called endergonic reaction. Also the negative ${\Delta}S^*$ value of ceruloplasmin oxidase indicates that the complex [$ES^*$] is further modulated through increasing structure arrangement.

Use of Peristeum as a Source of Endothelial-like Cells (혈관내피유사세포 채취의 원천으로 골막의 활용)

  • Park, Bong-Wook;Kim, Shin-Won;Kim, Uk-Kyu;Hah, Young-Sool;Kim, Jin-Hyun;Kim, Deok-Ryong;Sung, Iel-Young;Cho, Yeong-Cheol;Son, Jang-Ho;Kim, Jong-Ryoul;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.5
    • /
    • pp.385-391
    • /
    • 2011
  • Purpose: The periosteum is a well-known source of osteogenic precursor cells for tissue-engineered bone formation. However, cultured endothelial or endothelial-like cells derived from periosteum have not yet been investigated. This study focused on endothelial-like cell culture from the periosteum. Methods: Periosteal tissues were harvested from the mandible during surgical extraction of lower impacted third molars. The tissues were treated with 0.075% type I collagenase in phosphate-buffered saline (PBS) for 1 hr at $37^{\circ}C$ to release cellular fractions. The collagenase was inactivated with an equal volume of DMEM/10% fetal bovine serum (FBS) and the infranatant was centrifuged for 10 min at 2,400 rpm. The cellular pellet was filtered through a $100{\mu}m$ nylon cell strainer, and the filtered cells were centrifuged for 10 min at 2,400 rpm. The resuspended cells were plated into T25 flasks and cultured in endothelial cell basal medium (EBM)-2. Results: Among the hematopoietic markers, CD146 was more highly expressed than CD31 and CD34. The periosteal-derived cells also expressed CD90 and CD166, mesenchymal stem cell markers. Considering that the expression of CD146 was constant and that the expression of CD90 was lower at passage 5, respectively, the CD146 positive cells in passage 5 were isolated using the magnetic cell sorting (MACS) system. These CD146 sorted, periosteal-derived cells formed tube-like structures on Matrigel. The uptake of acetylated, low-density lipoprotein, labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI-Ac-LDL) was also examined in these cells. Conclusion: These results suggest that the CD146-sorted positive cells can be referred to as periosteal-derived CD146 positive endothelial-like cells. In particular, when a co-culture system with endothelial and osteoblastic cells in a three-dimensional scaffold is used, the use of periosteum as a single cell source would be strongly beneficial for bone tissue engineering.

Effects of CTHRC1 on odontogenic differentiation and angiogenesis in human dental pulp stem cells

  • Jong-soon Kim;Bin-Na Lee;Hoon-Sang Chang;In-Nam Hwang;Won-Mann Oh;Yun-Chan Hwang
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.18.1-18.10
    • /
    • 2023
  • Objectives: This study aimed to determine whether collagen triple helix repeat containing-1 (CTHRC1), which is involved in vascular remodeling and bone formation, can stimulate odontogenic differentiation and angiogenesis when administered to human dental pulp stem cells (hDPSCs). Materials and Methods: The viability of hDPSCs upon exposure to CTHRC1 was assessed with the WST-1 assay. CTHRC1 doses of 5, 10, and 20 ㎍/mL were administered to hDPSCs. Reverse-transcription polymerase reaction was used to detect dentin sialophosphoprotein, dentin matrix protein 1, vascular endothelial growth factor, and fibroblast growth factor 2. The formation of mineralization nodules was evaluated using Alizarin red. A scratch wound assay was conducted to evaluate the effect of CTHRC1 on cell migration. Data were analyzed using 1-way analysis of variance followed by the Tukey post hoc test. The threshold for statistical significance was set at p < 0.05. Results: CTHRC1 doses of 5, 10, and 20 ㎍/mL had no significant effect on the viability of hDPSCs. Mineralized nodules were formed and odontogenic markers were upregulated, indicating that CTHRC1 promoted odontogenic differentiation. Scratch wound assays demonstrated that CTHRC1 significantly enhanced the migration of hDPSCs. Conclusions: CTHRC1 promoted odontogenic differentiation and mineralization in hDPSCs.

The Effects of Platelet-Rich Fibrin on Osteoblast Proliferation and Differentiation: Effects of Platelet-Rich Fibrin on Osteoblasts (혈소판 농축 섬유소가 골모세포 증식과 분화에 미치는 영향)

  • Jung, Hae-Su;Bae, Hyun-Sook;Hong, Ki Seok
    • Journal of dental hygiene science
    • /
    • v.13 no.2
    • /
    • pp.158-164
    • /
    • 2013
  • The most frequently encountered problems at fixture-implantation sites are lack of adequate bone and proximity to anatomic structures. It is generally accepted that growth factors play an essential role in the healing process and tissue formation, and they have become the focus of grafting materials research. The granules in platelets contain high concentrations of various growth factors. In particular, platelet-rich fibrin (PRF) is a second-generation platelet concentrate that allows the production of fibrin membranes enriched with platelets and growth factors from an anticoagulant-free blood harvest. This study investigated the in vitro effects of PRF on osteoblasts, in terms of the key cellular functions, and especially the effects on two growth factors, the homodimer of platelet-derived growth factor subunit B (BPDGF-BB) and transforming growth factor (TGF)-${\beta}1$, which are associated with wound healing and regeneration (i.e., proliferation and differentiation). The following parameters were investigated: PDGF-BB and TGF-${\beta}1$ levels in PRF, cell viability, alkaline phosphatase (ALP) activity, type 1 collagen synthesis, and the expressions of osteoblast differentiation markers (ALP and runt-related transcription factor 2) and bone matrix proteins (type 1 collagen). The release of autologous growth factors from PRF was maintained for a reasonable period of time, and exerted positive effects on the proliferation and differentiation of osteoblasts. The use of PRF thus appears to be a promising method for enhancing bone healing and remodeling.

Effects of enamel matrix derivative and titanium on the proliferation and differentiation of osteoblasts (법랑기질유도체를 도포한 타이태늄 표면에서 조골세포의 증식 및 분화)

  • Park, Sang-Hyun;Lee, In-Kyeong;Yang, Seung-Min;Shin, Seung-Yun;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Han, Soo-Boo;Choi, Sang-Mook
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.3
    • /
    • pp.359-372
    • /
    • 2003
  • Among objectives of periodontal therapy. the principal one is the morphological and functional reconstruction of lost periodontal supporting tissues. This includes de novo formation of connective tissue attachment and the regrowth of alveolar bone. The use of enamel matrix derivative(EMD) may be a suitable means of regeneration new periodontal attachment in the infrabony defects. Implant used to replace lost tooth but, implantitis occurred after installation. The purpose of this study was to investigate the effects of EMD on differentiation and growth of osteoblast in titanium disc. Twentyfive millimeter diameter and 1mm thick Ti disc which was coated 25, 50, 100, 200${\mu}g$/ml of EMD(Emdogain(R)) used as experimental group, 25, 50, 100, 200ng/d of rhBMP-2 as positive control group, and no coat as negative control group. A human osteosarcoma cell line Saos-2 was cultured in Ti disc and cell proliferation and Alkaline phosphatase (ALP) activity were measured at 1 and 6 days. PCR was performed at 2 and 8 hours. Semi-quantitative RT-PCR for mRNA expressions of various osteoblastic differentiation markers -type I collagen, ALP, osteopontin, and bone sialoprotein - were performed at appropriate concentrations based upon the results of MTT and ALP assay. Cultured cell-disc complexes were prepared for scanning electron microscopy (SEM) at 2 hour. Data were analyzed using Mann-Whitney and repeated- measures 1-way analysis of variance(SPSS software version 10,SPSS. Chicago. IL). After culture, there was more osteoblast in EMD100${\mu}g$/ml than in EMD50, 200${\mu}g$/ml on day 6. There was significant difference in experimental and positive control group compared control group, as times go by(1 and 6 days). Alkaline phosphatase activity was different significantly in EMD100, 200${\mu}g$/ml and BMP100, 200${\mu}g$/ml on day 6. The results of reverse transcriptase-polymerase chain reaction (RT-PCR) showed that expression of mRNA for ALPase, collagen type I, osteopontin. hone sialoprotein and BMP-2 was detected at 2 hour and 8 hour in EMI 200${\mu}g$/ml subgroup and BMP100ng/ml subgroup. The results of this study suggest that application of enamel matrix derivative on osteoblast attached to titanium surface facilitate the expression of bone specific protein and the differentiation and growth of osteoblast.

Maxillary sinus floor elevation using autogenous skin-derived mesenchymal stem cells in miniature pigs (미니돼지에서 자가 피부유래 간엽성 줄기세포를 이용한 상악동저 거상술)

  • Byun, June-Ho;Kang, Eun-Ju;Maeng, Geun-Ho;Rho, Gyu-Jin;Kang, Dong-Ho;Lee, Jong-Sil;Park, Bong-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.2
    • /
    • pp.87-93
    • /
    • 2010
  • Introduction: In our previous studies, we isolated porcine skin-derived mesenchymal stem cells (pSDMSCs) from the ears of adult miniature pigs and evaluated the pluripotency of these pSDMSCs based on expressions of transcription factors, such as Oct-4, Sox-2, and Nanog. Moreover, the characteristic of mesenchymal stem cells was revealed by the expression of various mesenchymal stem cell markers, including CD29, CD44, CD90, and vimentin. The aim of this study was to evaluate in vivo osteogenesis after maxillary sinus lift procedures with autogenous pSDMSCs and scaffold. Materials and Methods: The autogenous pSDMSCs were isolated from the 4 miniature pigs, and cultured to 3rd passage with same methods of our previous studies. After cell membranes were labeled using a PKH26, $1{\times}10^{7}$ cells/$100{\mu}L$ of autogenous pSDMSCs were grafted into the maxillary sinus with a demineralized bone matrix (DBM) and fibrin glue scaffold. In the contralateral control side, only a scaffold was grafted, without SDMSCs. After two animals each were euthanized at 2 and 4 weeks after grafting, the in vivo osteogenesis was evaluated with histolomorphometric and osteocalcin immunohistochemical studies. Results: In vivo PKH26 expression was detected in all specimens at 2 and 4 weeks after grafting. Trabecular bone formation and osteocalcin expression were more pronounced around the grafted materials in the autogenous pSDMSCs-grafted group compared to the control group. Newly generated bone was observed growing from the periphery to the center of the grafted material. Conclusion: The results of the present study suggest that autogenous skin-derived mesenchymal stem cells grafting with a DBM and fibrin glue scaffold can be a predictable method in the maxillary sinus floor elevation technique for implant surgery.

Comparative Analysis of the Constituents of the Leaves and Roots of Rumex crispus and their Effects on the Differentiation of Human Osteoblast-like MG-63 Cells (소리쟁이 잎과 뿌리 성분 분석 및 사람 조골 유사 MG-63 세포 분화에 미치는 효과 비교)

  • Park, Heajin;Jeong, Jaehoon;Hyun, Hanbit;Kim, Jihye;Kim, Haesung;Oh, Hyun Il;Hwang, Hye Seong;Kim, Ha Hyung
    • YAKHAK HOEJI
    • /
    • v.58 no.5
    • /
    • pp.307-313
    • /
    • 2014
  • Rumex crispus (curled dock), which is a perennial wild plant, has long been used as a laxative, astringent, and medicine to treat blood and skin diseases. We recently reported that the roots of R. crispus are an effective nutraceutical for bone. This study prepared ethanol extracts of the leaves and roots of R. crispus, and analyzed the major constituents using liquid chromatography and mass spectrometry. In addition, their effects on the proliferation and differentiation of human osteoblast-like MG-63 cells, such as cell viability, alkaline phosphatase (ALP) activity, collagen content, and mineralization, were compared. The chromatograms of the chemical constituents of the two extracts exhibited quite different profiles: quercetin and quercitrin were identified as major peaks in the leaf extract, whereas cinnamtannin B1 and procyanidin isomers were the major peaks for the root extract. Neither extract was cytotoxic at concentrations of < $25{\mu}g/ml$. ALP activity and collagen synthesis-which are markers of the early stage of osteogenesis-in MG-63 cells were significantly increased upon the addition of the root extract compared with the addition of the leaf extract. In contrast, the leaf extract had a more stimulatory effect on mineralization-which is marker of the late stage of osteogenesis-in MG-63 cells than did the root extract. In conclusion, extracts of both leaves and roots of R. crispus stimulated the bone-forming activity of osteoblasts; in particular, the root extract was more effective in the early stage of osteoblast differentiation, while the leaf extract was more effective in the late stage. This difference in anabolic activity may be due to differences in the constituents of the leaves and roots. The leaves and roots of R. crispus appear to complement each other as stimulators of bone formation.

A ROCK Inhibitor Blocks the Inhibitory Effect of Chondroitin Sulfate Proteoglycan on Morphological Changes of Mesenchymal Stromal/Stem Cells into Neuron-Like Cells

  • Lim, Hee-Suk;Joe, Young Ae
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.447-453
    • /
    • 2013
  • Chondroitin sulfate proteoglycan (CSPG) inhibits neurite outgrowth of various neuronal cell types, and CSPG-associated inhibition of neurite outgrowth is mediated by the Rho/ROCK pathway. Mesenchymal stromal/stem cells (MSCs) have the potential to differentiate into neuron-like cells under specific conditions and have been shown to differentiate into neuron-like cells by co-treatment with the ROCK inhibitor Y27632 and the hypoxia condition mimicking agent $CoCl_2$. In this study, we addressed the hypothesis that a ROCK inhibitor might be beneficial to regenerate neurons during stem cell therapy by preventing transplanted MSCs from inhibition by CSPG in damaged tissues. Indeed, dose-dependent inhibition by CSPG pretreatment was observed during morphological changes of Wharton's jelly-derived MSCs (WJ-MSCs) induced by Y27632 alone. The formation of neurite-like structures was significantly inhibited when WJ-MSCs were pre-treated with CSPG before induction under Y27632 plus $CoCl_2$ conditions, and pretreatment with a protein kinase C inhibitor reversed such inhibition. However, CSPG treatment resulted in no significant inhibition of the WJ-MSC morphological changes into neuron-like cells after initiating induction by Y27632 plus $CoCl_2$. No marked changes were detected in expression levels of neuronal markers induced by Y27632 plus $CoCl_2$ upon CSPG treatment. CSPG also blocked the morphological changes of human bone marrow-derived MSCs into neuron-like cells under other neuronal induction condition without the ROCK inhibitor, and Y27632 pre-treatment blocked the inhibitory effect of CSPG. These results suggest that a ROCK inhibitor can be efficiently used in stem cell therapy for neuronal induction by avoiding hindrance from CSPG.