• Title/Summary/Keyword: Bone/implant interface

Search Result 153, Processing Time 0.019 seconds

Histological Study on the Interface of Bone and Implant (골과 임플란트 접촉면의 조직학적 연구)

  • Kim, Ju-Sung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • This paper reports the morphological nature of the remodelled interface process between implants and surrounding bone after 1, 4, 6, 8 and 12 weeks of implantation of smooth machined implants into rat tibias. After 4 weeks of implantation, histochemical analysis showed that the new bone was growing in direct contact with the implant. In the forming process, the activatived osteoblast cells migrated toward the interface and colonized the surface at the contact areas. This immature woven bone, rich in osteocyte lacunae, was deposited directly onto the implant surface. Osteoblast activity was found to continue ill 12 weeks of implantation The osteoblasts in lacunar areas developed numerous processes and synthesized bone matrix, after all, surrounded by secreting matrix. At the 12th week, the amount of newly formed bone matrix between bone and implant increased in mineralization. The mineralized mature bone contained well organized collagen fibers with characteristic banding pattern bone tissue formation around the implant.

  • PDF

Stress-strain distribution at bone-implant interface of two splinted overdenture systems using 3D finite element analysis

  • Hussein, Mostafa Omran
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.333-340
    • /
    • 2013
  • PURPOSE. This study was accomplished to assess the biomechanical state of different retaining methods of bar implant-overdenture. MATERIALS AND METHODS. Two 3D finite element models were designed. The first model included implant overdenture retained by Hader-clip attachment, while the second model included two extracoronal resilient attachment (ERA) studs added distally to Hader splint bar. A non-linear frictional contact type was assumed between overdentures and mucosa to represent sliding and rotational movements among different attachment components. A 200 N was applied at the molar region unilaterally and perpendicular to the occlusal plane. Additionally, the mandible was restrained at their ramus ends. The maximum equivalent stress and strain (von Mises) were recorded and analyzed at the bone-implant interface level. RESULTS. The values of von Mises stress and strain of the first model at bone-implant interface were higher than their counterparts of the second model. Stress concentration and high value of strain were recognized surrounding implant of the unloaded side in both models. CONCLUSION. There were different patterns of stress-strain distribution at bone-implant interface between the studied attachment designs. Hader bar-clip attachment showed better biomechanical behavior than adding ERA studs distal to hader bar.

Marginal bone level changes in association with different vertical implant positions: a 3-year retrospective study

  • Kim, Yeon-Tae;Lim, Gyu-Hyung;Lee, Jae-Hong;Jeong, Seong-Nyum
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.4
    • /
    • pp.231-239
    • /
    • 2017
  • Purpose: To retrospectively evaluate the relationship between the vertical position of the implant-abutment interface and marginal bone loss over 3 years using radiological analysis. Methods: In total, 286 implant surfaces of 143 implants from 61 patients were analyzed. Panoramic radiographic images were taken immediately after implant installation and at 6, 12, and 36 months after loading. The implants were classified into 3 groups based on the vertical position of the implant-abutment interface: group A (above bone level), group B (at bone level), and group C (below bone level). The radiographs were analyzed by a single examiner. Results: Changes in marginal bone levels of $0.99{\pm}1.45$, $1.13{\pm}0.91$, and $1.76{\pm}0.78mm$ were observed at 36 months after loading in groups A, B, and C, respectively, and bone loss was significantly greater in group C than in groups A and B. Conclusions: The vertical position of the implant-abutment interface may affect marginal bone level change. Marginal bone loss was significantly greater in cases where the implantabutment interface was positioned below the marginal bone. Further long-term study is required to validate our results.

Study on the stress distribution depending on the bone type and implant abutment connection by finite element analysis (지대주 연결 형태와 골질에 따른 저작압이 임프란트 주위골내 응력분포에 미치는 영향)

  • Park, Hyun-Soo;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.531-554
    • /
    • 2006
  • Oral implants must fulfill certain criteria arising from special demands of function, which include biocompatibility, adequate mechanical strength, optimum soft and hard tissue integration, and transmission of functional forces to bone within physiological limits. And one of the critical elements influencing the long-term uncompromise functioning of oral implants is load distribution at the implant- bone interface, Factors that affect the load transfer at the bone-implant interface include the type of loading, material properties of the implant and prosthesis, implant geometry, surface structure, quality and quantity of the surrounding bone, and nature of the bone-implant interface. To understand the biomechanical behavior of dental implants, validation of stress and strain measurements is required. The finite element analysis (FEA) has been applied to the dental implant field to predict stress distribution patterns in the implant-bone interface by comparison of various implant designs. This method offers the advantage of solving complex structural problems by dividing them into smaller and simpler interrelated sections by using mathematical techniques. The purpose of this study was to evaluate the stresses induced around the implants in bone using FEA, A 3D FEA computer software (SOLIDWORKS 2004, DASSO SYSTEM, France) was used for the analysis of clinical simulations. Two types (external and internal) of implants of 4.1 mm diameter, 12.0 mm length were buried in 4 types of bone modeled. Vertical and oblique forces of lOON were applied on the center of the abutment, and the values of von Mises equivalent stress at the implant-bone interface were computed. The results showed that von Mises stresses at the marginal. bone were higher under oblique load than under vertical load, and the stresses were higher at the lingual marginal bone than at the buccal marginal bone under oblique load. Under vertical and oblique load, the stress in type I, II, III bone was found to be the highest at the marginal bone and the lowest at the bone around apical portions of implant. Higher stresses occurred at the top of the crestal region and lower stresses occurred near the tip of the implant with greater thickness of the cortical shell while high stresses surrounded the fixture apex for type N. The stresses in the crestal region were higher in Model 2 than in Model 1, the stresses near the tip of the implant were higher in Model 1 than Model 2, and Model 2 showed more effective stress distribution than Model.

Finite element study on the effect of abutment length and material on implant bone interface against dynamic loading

  • Mishra, Manish;Ozawa, Shogo;Masuda, Tatsuhiko;Yoshioka, Fumi;Tanaka, Yoshinobu
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.140-144
    • /
    • 2011
  • PURPOSE. Finite element study on the effect of abutment length and material on implant bone interface against dynamic loading. MATERIALS AND METHODS. Two dimensional finite element models of cylinderical implant, abutments and bone made by titanium or polyoxymethylene were simulated with the aid of Marc/Mentat software. Each model represented bone, implant and titanium or polyoxymethylene abutment. Model 1: Implant with 3 mm titanium abutment, Model 2: Implant with 2 mm polyoxymethylene resilient material abutment, Model 3: Implant with 3 mm polyoxymethylene resilient material abutment and Model 4: Implant with 4 mm polyoxymethylene resilient material abutment. A vertical load of 11 N was applied with a frequency of 2 cycles/sec. The stress distribution pattern and displacement at the junction of cortical bone and implant was recorded. RESULTS. When Model 2, 3 and 4 are compared with Model 1, they showed narrowing of stress distribution pattern in the cortical bone as the height of the polyoxymethylene resilient material abutment increases. Model 2, 3 and 4 showed slightly less but similar displacement when compared to Model 1. CONCLUSION. Within the limitation of this study, we conclude that introduction of different height resilient material abutment with different heights i.e. 2 mm, 3 mm and 4 mm polyoxymethylene, does not bring about significant change in stress distribution pattern and displacement as compared to 3 mm Ti abutment. Clinically, with the application of resilient material abutment there is no significant change in stress distribution around implant-bone interface.

Simulation of tissue differentiation around acetabular cups: the effects of implant-bone relative displacement and polar gap

  • Mukherjee, Kaushik;Gupta, Sanjay
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.95-109
    • /
    • 2014
  • Peri-acetabular bone ingrowth plays a crucial role in long-term stability of press-fit acetabular cups. A poor bone ingrowth often results in increased cup migration, leading to aseptic loosening of the implant. The rate of peri-prosthetic bone formation is also affected by the polar gap that may be introduced during implantation. Applying a mechano-regulatory tissue differentiation algorithm on a two-dimensional plane strain microscale model, representing implant-bone interface, the objectives of the study are to gain an insight into the process of peri-prosthetic tissue differentiation and to investigate its relationship with implant-bone relative displacement and size of the polar gap. Implant-bone relative displacement was found to have a considerable influence on bone healing and peri-acetabular bone ingrowth. An increase in implant-bone relative displacement from $20{\mu}m$ to $100{\mu}m$ resulted in an increase in fibrous tissue formation from 22% to 60% and reduction in bone formation from 70% to 38% within the polar gap. The increase in fibrous tissue formation and subsequent decrease in bone formation leads to weakening of the implant-bone interface strength. In comparison, the effect of polar gap on bone healing and peri-acetabular bone ingrowth was less pronounced. Polar gap up to 5 mm was found to be progressively filled with bone under favourable implant-bone relative displacements of $20{\mu}m$ along tangential and $20{\mu}m$ along normal directions. However, the average Young's modulus of the newly formed tissue layer reduced from 2200 MPa to 1200 MPa with an increase in polar gap from 0.5 mm to 5 mm, suggesting the formation of a low strength tissue for increased polar gap. Based on this study, it may be concluded that a polar gap less than 0.5 mm seems favourable for an increase in strength of the implant-bone interface.

HISTOLOGIC STUDY OF VARIOUS DENTAL IMPLANT-TISSUE INTERFACE (수종의 치근형 골내매식체와 조직간의 반응에 관한 조직학적 연구)

  • Lee, Ho-Young;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.1
    • /
    • pp.7-23
    • /
    • 1990
  • The success or failure of endosseous dental implants is related to the cellular activity at the implant surface. Success seems to be associated with the enclosure of the implant in a non-inflammed connective tissue or the formation of a direct bone implant interface. The purpose of this study was to examine the tissue reactions to the various implants at the submergible state in dog mandible. The $Br\"{a}nemark$, Core-Vent, Intergral, Bone spiral were selected for evaluation and also the Kimplant, Nephrite were used for the experimental study. After 4 months the animals were sacrificed. The interface zone between bone and implant was investigated using x-rays, light microscope, scanning electron microscope, transmission electron microscope. The following results were obtained from this study. 1. $Br\"{a}nemark$, Core-Vent, Kimplant, Integral showed no mobility and bone growth over the healing screws of the implants. Histologically most of the implant surface were covered by remodelled lamellar bone, and partly by a cellular layer or the thin fibrous tissue layer. 2. The Bone spiral showed no mobility and partially radiolucent line around the implant. The upper part of the implant was surrounded by a thin fibrous connective tissue and the middle, apical part of it were contacted with bone directly. 3. The Nephrite implant showed severe mobility and a radiolucent line around the implant. Histologically it showed mild inflammation and was surrounded by a fibrous connective tissue. 4. Scanning electron microscope showed that there was no amorphous ground substance in the Nephrite implant but the formation of ground substance over the collagen filaments in other implants. 5. Transmission electron microscope showed that collagen filaments were approached irregularly to the surface of all implants and in the $Br\"{a}nemark$, Core-Vent, Kimplant, Integral there was amorphous layer between the implant and the collagen filaments. It seemed to be ground substances.

  • PDF

The influence of systemically administered oxytocin on the implant-bone interface area: an experimental study in the rabbit

  • Cho, Sung-Am;Park, Sang-Hun;Cho, Jin-Hyun
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.505-511
    • /
    • 2014
  • PURPOSE. The purpose of this study was to assess the effect of systemically administered oxytocin (OT) on the implant-bone interface by using histomorphometric analysis and the removal torque test. MATERIALS AND METHODS. A total of 10 adult, New Zealand white, female rabbits were used in this experiment. We placed 2 implants (CSM; CSM Implant, Daegu, South Korea) in each distal femoral metaphysis on both the right and left sides; the implants on both sides were placed 10 mm apart. In each rabbit, 1 implant was prepared for histomorphometric analysis and the other 3 were prepared for the removal torque test (RT). The animals received intramuscular injections of either saline (control group; 0.15 M NaCl) or OT (experimental group; $200{\mu}g/rabbit$). The injections were initiated on Day 3 following the implant surgery and were continued for 4 subsequent weeks; the injections were administered twice per day (at a 12-h interval), for 2 days per week. RESULTS. While no statistically significant difference was observed between the two groups (P=.787), the control group had stronger removal torque values. The serum OT concentration (ELISA value) was higher in the OT-treated group, although no statistically significant difference was found. Further, the histomorphometric parameter (bone-to-implant contact [BIC], inter-thread bone, and peri-implant bone) values were higher in the experimental group, but the differences were not significant. CONCLUSION. We postulate that OT supplementation via intramuscular injection weakly contributes to the bone response at the implant-bone interface in rabbits. Therefore, higher concentrations or more frequent administration of OT may be required for a greater bone response to the implant. Further studies analyzing these aspects are needed.

Electron Microscopic Study of Osseointegration between Bone and Smooth Machined Implants (선반가공 임플란트와 골조직의 유착에 관한 전자현미경적 연구)

  • Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.34 no.4
    • /
    • pp.277-283
    • /
    • 2004
  • This paper reports that the ultrastructural nature of the interface process between the implants and surrounding bone has been studied after in vivo 1, 4, 8, 12 weeks of implantation of smooth machined implants into rabbit tibias. There was no indication of the fibrous connective tissue formation around the implant that imply intolerance of the bone tissue towards the implant after 1 week of implantation. The regions showing direct bone tissue bonding to the smooth machined implant contained osteoblast activating across the interface in the direction after 4 weeks of implantation. The reaction of a smooth machined implant caused in the first instance formation of an amorphous woven bone, which transformed into a mineralized bone containing collagen fibers. After 8 weeks of implantation, the activities of osteoblast initiated osseointegration forming bone matrix at the interface. During this period, the osteoblast surrounded with a matrix consisting of collagen bundles running in various directions. In the interface area between newly formed bone tissue and implants which has been inserted in rabbit tibias for 12 weeks, the implant and mineralized bone was separated by an amorphous electron dense material layer about $1{\sim}1.5{\mu}m$ in thickness.

FINITE ELEMENT ANALYSIS OF THE EFFECT OF CANTILEVER AND IMPLANT ORIENTATION ON STRESS DISTRIBUTION IN A MANDIBULAR IMPLANT-SUPPORTED BAR OVERDENTURE (하악피개의치에서 임플랜트의 식립각도에 따른 칸틸레버 길이의 감소효과가 응력분포 양상에 미치는 영향 -삼차원 유한요소법을 이용한 분석-)

  • Park, Jun-Soo;Lee, Sung-Bok;Kwon, Kung-Rock;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.444-456
    • /
    • 2007
  • Statement of problem: Implant inclination and cantilever loading increse loads distributed to implants, potentially causing biomechanical complications. Controversy exists regarding the effect of the intentionally distal-inclined implant for the reduction of the cantilever length. Purpose: This study investigated the stress distribution at the bone/implant interface and prostheses with 3D finite element stress analysis by using four different cantilever lengths and implant inclinations in a mandibular implant-supported bar overdenture. Material and methods: Four 3-D finite element models were created in which 4 implants were placed in the interforaminal area and had four different cantilver lengths(10, 6.9, 4 and 1.5mm) and distal implant inclinations$(0^{\circ},\;15^{\circ},\;30^{\circ}\;and\;45^{\circ})$ respectively. Vortical forces of 120N and oblique forces of 45N were applied to the molar area. Stress distribution in the bone around the implant was analysed under different distal implant inclinations. Results: Analysis of the von Mises stresses for the bone/implant interfaces and prostheses revealed that the maximum stresses occurred at the most distal bone/implant interface and the joint of bar and abutment, located on the loaded side and significantly incresed with the implant inclinations, especially over $45^{\circ}$. Conclusion: Within the limitations of this study, it was suggested that too much distal inclination over 45 degrees can put the implant at risk of overload and within the dimension of the constant sum of a anterior-posterior spread and cantilever length, a distal implant inclination compared to cantilever length had the much larger effect on the stress distribution at the bone/implant interface.