• Title/Summary/Keyword: Bondwire Inductor

Search Result 7, Processing Time 0.02 seconds

Low cost high-Q veritcal inductor using bondwires for plastic-packaged MMICs (플라스틱 패키지되는 MMIC를 위한 저가격 고품질의 수직형 본딩와이어 인덕터)

  • 이용구;이해영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.7
    • /
    • pp.17-24
    • /
    • 1998
  • We proposed a novel bondwire inductor buried in plastic package for low cost MMIC and characaterized the electrical perofmrance in a wide frequency range using the full-wave analysis of finite element method(FEM), and then we fabricated and measured the scale-up model in order to prove the characteristics. Th ebondwire inductor has higher quality factor and higher cutoff frequency than the conventional spiral inductor designed n the same area as the bondwire inductor. Since the air-bridge process is not requried for the bondwire inductor, it is very suitable for low cost plastic-packaged MMIC production. The bondwire inductor has the field distribution localized around the bondwire inductor and hence is more compatible to the crosstalk problems.

  • PDF

Implementation of High-Q Bondwire Inductors on Silicon RFIC (RFIC를 위한 실리콘 기판에서의 고품질 본드와이어 인덕터 구현)

  • 최근영;송병욱;김성진;이해영
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.12
    • /
    • pp.559-565
    • /
    • 2002
  • Today, because a quality factor of the inductor fabricated on silicon substrate for RFIC is under 12, the realization of inductor haying high-Q is essential. In this paper, two inductors having improved Q-factor are proposed and fabricated using a bondwire on silicon substrate. Also for the PGS is applied to the same inductors, four inductors are fabricated finally The bondwire Inductors have the relatively low conductor loss due to wide cross-section area and they can reduce the parastic capacitance very much because they are located in the air. Simulation and measurement results show that the proposed inductors have much more improved Q-factor, 15, than a conventional spiral inductor at 1.5 GHz. Because of the use of an automatic bonding machine, we can fabricate the high - Q inductors very easily, repeatedly.

Design of a Multiband CMOS VCO using Switched Bondwire Inductor (스위치드 본드와이어 인덕터를 이용한 다중대역 CMOS 전압제어발진기 설계)

  • Ryu, Seonghan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.231-237
    • /
    • 2016
  • This paper presents a multiband low phase noise CMOS VCO with wide frequency tunability using switched bondwire inductor bank. The combination of bondwire inductor and CMOS switch transistor enhances frequency tunability and improves phase noise characteristics. The proposed multiband VCO operates from 2.3GHz to 6.3GHz with phase noise of -136dBc/Hz and -122dBc/Hz at 1 MHz offset frequency, respectively. Switched bondwire inductor bank shows high quality factor(Q) at each frequency band, which allows better tradeoff between phase noise and power consumption. The proposed VCO is designed in TSMC 0.18um CMOS process and consumes 7.2 mW power resulting in figure of merit(FOM) of -189.3dBc/Hz at 1 MHz offset from 6GHz carrier frequency.

Novel high-Q veritcal inductor using bondwires for MMICs (본딩와이어를 이용한 MMIC용 고품질 수직형 인덕터)

  • 이용구;윤상기;이해영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.9
    • /
    • pp.28-35
    • /
    • 1997
  • A novel high-Q vertical jinductor for MMICs is proposed and characterized in a wide range of frequencies (DC~10 GHz) using the numerical methods such as the PeEC(partial equivalent element circuit), the FDM (finite difference method) and the MoM (method of moments). Electrical superiority of the vertical inductor to the horizontal is observed in terms of the magnetic flux linkage and the ground screening effect. The veritcal bondwire inductor is designed in consideration of the wire bonding feasibility and the optimum electrical peformance. This structure is also analyzed using the equivalent circuit and compared with the conventional spiral inductors From the calculated results, high Q-factor, inductance, and cut-off frequency are observed to be inherent characteristics of the veritcal bondwire inductor.

  • PDF

Low Phase Noise CMOS VCO with Hybrid Inductor

  • Ryu, Seonghan
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.158-162
    • /
    • 2015
  • A low phase noise CMOS voltage controlled oscillator(VCO) for multi-band/multi-standard RF Transceivers is presented. For both wide tunability and low phase noise characteristics, Hybrid inductor which uses both bondwire inductor and planar spiral inductor in the same area, is proposed. This approach reduces inductance variation and presents high quality factor without custom-designed single-turn inductor occupying large area, which improves phase noise and tuning range characteristics without additional area loss. An LC VCO is designed in a 0.13um CMOS technology to demonstrate the hybrid inductor concept. The measured phase noise is -121dBc/Hz at 400KHz offset and -142dBc/Hz at 3MHz offset from a 900MHz carrier frequency after divider. The tuning range of about 28%(3.15 to 4.18GHz) is measured. The VCO consumes 7.5mA from 1.3V supply and meets the requirements for GSM/EDGE and WCDMA standard.

X-band CMOS VCO for 5 GHz Wireless LAN

  • kim, Insik;Ryu, Seonghan
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.172-176
    • /
    • 2020
  • The implementation of a low phase noise voltage controlled oscillator (VCO) is important for the signal integrity of wireless communication terminal. A low phase noise wideband VCO for a wireless local area network (WLAN) application is presented in this paper. A 6-bit coarse tune capacitor bank (capbank) and a fine tune varactor are used in the VCO to cover the target band. The simulated oscillation frequency tuning range is from 8.6 to 11.6 GHz. The proposed VCO is desgned using 65 nm CMOS technology with a high quality (Q) factor bondwire inductor. The VCO is biased with 1.8 V VDD and shows 9.7 mA current consumption. The VCO exhibits a phase noise of -122.77 and -111.14 dBc/Hz at 1 MHz offset from 8.6 and 11.6 GHz carrier frequency, respectively. The calculated figure of merit(FOM) is -189 dBC/Hz at 1 MHz offset from 8.6 GHz carrier. The simulated results show that the proposed VCO performance satisfies the required specification of WLAN standard.

Design Issues of CMOS VCO for RF Transceivers

  • Ryu, Seong-Han
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • This paper describes CMOS VCO circuit design procedures and techniques for multi-band/multi-standard RF transceivers. The proposed techniques enable a 4 GHz CMOS VCO to satisfy all requirements for Quad-band GSMIEDGE and WCDMA standards by achieving a good trade-off among important specifications, phase noise, power consumption, modulation performance, and chip area efficiency. To meet the very stringent GSM T/Rx phase noise and wide frequency range specifications, the VCO utilizes bond-wire inductors with high-quality factor, an 8-bit coarse tune capbank for low VCO gain(30$\sim$50 MHz/V) and an on-chip $2^{nd}$ harmonic noise filter. The proposed VCO is implemented in $0.13{\mu}m$ CMOS technology. The measured tuning range is about 34 %(3.17 to 4.49 GHz). The VCO exhibits a phase noise of -123 dBc/Hz at 400 kHz offset and -145 dBc/Hz at 3 MHz offset from a 900 MHz carrier after LO chain. The calculated figure of merit(FOM) is -183.5 dBc/Hz at 3 MHz offset. This fully integrated VCO occupies $0.45{\times}0.9\;mm^2$.