• Title/Summary/Keyword: Bonding test

Search Result 1,172, Processing Time 0.021 seconds

The micro-tensile bond strength of two-step self-etch adhesive to ground enamel with and without prior acid-etching (산부식 전처리에 따른 2단계 자가부식 접착제의 연마 법랑질에 대한 미세인장결합강도)

  • Kim, You-Lee;Kim, Jee-Hwan;Shim, June-Sung;Kim, Kwang-Mahn;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.148-156
    • /
    • 2008
  • Statement of problems: Self-etch adhesives exhibit some clinical benefits such as ease of manipulation and reduced technique-sensitivity. Nevertheless, some concern remains regarding the bonding effectiveness of self-etch adhesives to enamel, in particular when so-called 'mild' self-etch adhesives are employed. This study compared the microtensile bond strengths to ground enamel of the two-step self-etch adhesive Clearfil SE Bond (Kuraray) to the three-step etch-and- rinse adhesive Scotchbond Multi-Purpose (3M ESPE) and the one-step self-etch adhesive iBond (Heraeus Kulzer). Purpose: The purpose of this study was to determine the effect of a preceding phosphoric acid conditioning step on the bonding effectiveness of a two-step self-etch adhesive to ground enamel. Material and methods: The two-step self-etch adhesive Clearfil SE Bond non-etch group, Clearfil SE Bond etch group with prior 35% phosphoric acid etching, and the one-step self-etch adhesive iBond group were used as experimental groups. The three-step etch-and-rinse adhesive Scotchbond Multi-Purpose was used as a control group. The facial surfaces of bovine incisors were divided in four equal parts cruciformly, and randomly distributed into each group. The facial surface of each incisor was ground with 800-grit silicon carbide paper. Each adhesive group was applied according to the manufacturer's instructions to ground enamel, after which the surface was built up using Light-Core (Bisco). After storage in distilled water at $37^{\circ}C$ for 1 week, the restored teeth were sectioned into enamel beams approximately 0.8*0.8mm in cross section using a low speed precision diamond saw (TOPMET Metsaw-LS). After storage in distilled water at $37^{\circ}C$ for 1 month, 3 months, microtensile bond strength evaluations were performed using microspecimens. The microtensile bond strength (MPa) was derived by dividing the imposed force (N) at time of fracture by the bond area ($mm^2$). The mode of failure at the interface was determined with a microscope (Microscope-B nocular, Nikon). The data of microtensile bond strength were statistically analyzed using a one-way ANOVA, followed by Least Significant Difference Post Hoc Test at a significance level of 5%. Results: The mean microtensile bond strength after 1 month of storage showed no statistically significant difference between all adhesive groups (P>0.05). After 3 months of storage, adhesion to ground enamel of iBond was not significantly different from Clearfil SE Bond etch (P>>0.05), while Clearfil SE Bond non-etch and Scotchbond Multi-Purpose demonstrated significantly lower bond strengths (P<0.05), with no significant differences between the two adhesives. Conclusion: In this study the microtensile bond strength to ground enamel of two-step self-etch adhesive Clearfil SE Bond was not significantly different from three-step etch-and-rinse adhesive Scotchbond Multi-Purpose, and prior etching with 35% phosphoric acid significantly increased the bonding effectiveness of Clearfil SE Bond to enamel at 3 months.

Adhesion Performance of Plywoods Prepared with Different Layering Methods of Thermoplastic Resin Films (열가소성수지 필름의 적층방법에 따른 합판의 접착성능)

  • Kang, Eunchang;Lee, Sang-Min;Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.559-571
    • /
    • 2017
  • This study was conducted to determine the adhesive performances of plywoods affected by layering direction and the amounts of thermoplastic films. The face and back layers of veneer were hardwood species (Mixed light hardwood) and core layer veneer was radiata pine (Pinus radiata D. Don). Thermoplastic film used as adhesive were polypropylene (PP) film and polyethylene (PE) film. Thermal analysis and tensile strength were investigated on each films. As a result, the melting temperature of PP and PE films were $163.4^{\circ}C$ and $109.7^{\circ}C$, respectively, and the crystallization temperature were $98.9^{\circ}C$ and $93.6^{\circ}C$, respectively. Tensile strength and elongation of each films appeared higher on the width direction than length direction. Considering the characteristics of the thermoplastic films, the test for the amount of film used was carried out by layering film to the target thickness on veneer. The effecting of layering direction of film on plywood manufacturing was conducted by laminating in the length and width directions of the film according to the grain direction of veneer. Tensile-shear strength of plywood in wet condition was satisfied with the quality standard (0.7 MPa) of KS F 3101 when the film was used over 0.05 mm of PP film and over 0.10 mm of PE film. Tensile-shear strength of plywood after cyclic boiling exceeded the KS standard when PP film was used 0.20 mm thickness. Furthermore, higher bonding strength was observed on a plywood made with width direction of film according to grain direction of veneer than that of length direction of film. Based on microscopic analysis of the surface and bonding line of plywood, interlocking between veneers by penetration of a thermoplastic film into inner and cracks were observed.

Effects of activators contained in adhesives on dentin bond strengths (상아질 접착제에 포함된 활성제의 사용 유무가 자가중합 복합레진의 상아질에 대한 전단결합강도에 미치는 영향)

  • Kang, Hye-Kyung;Shin, Joo-Hee;Suh, Kyu-Won;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.511-519
    • /
    • 2008
  • Statement of problem: An incompatibility between the initiator systems of self-curing composite resins and light-curing adhesives was supposed recently. Purpose: The purpose of the study was to evaluate the influence of activators for self/dual bonding on dentin shear bonding strengths. Material and methods: Fifty human molars were divided into 5 groups. A flat dentin surface was created for each tooth. A self-curing composite resin (Luxacore) was bonded with the following adhesives (n = 10); One-Step, Prime&Bond NT, AdheSE, Prime&Bond NT and AdheSE were also used in combination with activators. Shear bond strengths were measured after 24 hours of water storage. The specimens were loaded in shear in the Instron until failure at a 1 mm/min crosshead speed. Data were compared using one-way ANOVA and Tukey HSD test (${\alpha}$= 0.05). Results: The dentin adhesive systems in order of decreasing median bond strength were One-Step > Prime&Bond NT with activator, AdheSE with activator > Prime&Bond NT, AdheSE. Among adhesives, One-Step had the highest bond strength. Prime&Bond NT with activator had higher bond strengths than Prime&Bond NT that was used alone, and so was AdheSE. Conclusion: Shear bond strengths were increased in Prime&Bond NT and AdheSE when these were used with activators comparing used without activators. But using activators was not effective clinically comparing One-Step.

Properties and Glue Shear Strength of the Water Soluble Urea-Phenol Copolymer Adhesive as a High Temperature Curing Binder for Plywood (합판용(合板用) 고온경화형(高温硬化型) 수용성(水溶性) 요소(尿素)·페놀공축합수지(共縮合樹脂)의 성질(性質)과 그 접착강도(接着強度))

  • Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.60 no.1
    • /
    • pp.51-57
    • /
    • 1983
  • Properties and glue shear strength of each water soluble rues-phenol copolymer adhesive and phenolic resin adhesive were examined as a high temperature curing binder through the manufacture of plywood made of Kapur veneer. The former has different molar ratio and the latter was made from different catalyst method. The results are summarized as follows: 1) Specific gravities of air dried plywood manufactured from each adhesive ranged from 0.67 to 0.82 and their moisture contents met the K.S. standard 2) In dry and wet shear strength, adhesives with 60 percent of non volatile content showed higher values than those with 50 percent except phenolic resin. Urea-phenol copolymer resin with 20 percent of phenol content exhibited the highest, and that with 70 percent the lowest. Filling effect of wood flour on the bonding strength is great in urea-phenol copolymer resin with more than 50 percent of phenol content, especially significant in 50 percent of non volatile content including alkali catalyst phenolic resin. Alkali and acid catalyst methods were the highest among the adhesive manufacture methods. In wet strength, urea resin belongs to the lowest group. 3) In glue shear strength after boiling and drying test, no method for manufacturing phenolic formaldehyde resin adhesive was stronger than alkali and acid catalyst methods. Phenolic resin made from alkali catalyst method needs a wood flour filler to improve the bonding quality. Urea-phenol copolymer resin with 10 percent of phenol content showed the reasonable water resistance.

  • PDF

STUDY ON THE INTERFACE BETWEEN LIGHT-CURED GLASS IONOMER BASE AND INDIRECT COMPOSITE RESIN INLAY AND DENTIN (기저재용 광중합형 글래스아이오노머의 치질 및 복합 레진 인레이에 대한 접착양상)

  • Lee, Song-Hee;Kim, Dong-Jun;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.3
    • /
    • pp.158-169
    • /
    • 2005
  • This study was done to evaluate the shear bond strength between light-cured glass ionomer cement (GIC) base and resin cement for luting indirect resin inlay and to observe bonding aspects which is produced at the interface between them by SEM. Two types of light cured GIC (Fuji II LC Improved, GC Co. Tokyo, Japan and Vitrebond$^{TM}$, 3M, Paul Minnesota U.S.A) were used in this study. For shear bond test, GIC specimens were made and immersed in 37$^{\circ}C$ distilled water for 1 hour, 24 hours, 1 week and 2 weeks. Eighty resin inlays were prepared with Artglass$^{(R)}$ (Heraeus Kultzer Germany) and luted with Variolink$^{(R)}$ II (Ivoclar Vivadent, Liechtenstein). Shear bond strength of each specimen was measured and fractured surface were examined. Statistical analysis was done with one-way ANOVA. Twenty four extracted human third molars were selected and Class II cavities were prepared and GIC based at axiopulpal lineangle. The specimens were immersed in 37$^{\circ}C$ distilled water for 1 hour, 24 hours, 1 week and 2 weeks. And then the resin inlays were luted to prepared teeth. The specimens were sectioned vertically with low speed saw. The bonding aspect of the specimens were observed by SEM (JSM-5400$^{(R)}$, Jeol, Tokyo, Japan) .There was no significant difference between the shear bond strength according to storage periods of light cured GIC base. And cohesive failure was mostly appeared in GIC On scanning electron micrograph, about 30 - 120 $\mu$m of the gaps were observed on the interface between GIC base and dentin. No gaps were observed on the interface between GTC and resin inlay.

Influence of the curing time for the adhesive on the oxygen-inhibited layer thickness and the shear bond strength to dentin (광조사 시간이 접착제의 표면 미중합층의 두께와 전단접착강도에 미치는 영향에 관한 연구)

  • Choi, Yong-Hoon;Bae, Ji-Hyun;Son, Ho-Hyun;Lee, In-Bog;Um, Chung-Moon;Baek, Seung-Ho;Kim, Oh-Young;Kim, Chang-Keun;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.2
    • /
    • pp.177-184
    • /
    • 2004
  • Objectives : This study investigated the hypothesis that increasing light-curing time would leave the oxygen-inhibited layer (OIL) of the adhesive thinner, and in turn, result in lower shear bond strength (SBS) than those obtained by the routine curing procedures. Methods:120 human extracted posterior teeth were randomly divided into three groups for bonding with three adhesives:All Bond 2/sup (R)/, One Step/sup (R)/, and Adper Prompt/sup (R)/. They were subsequently divided into four subgourps with different light-curing time (10, 20, 30 and 60s). The assigned adhesives were applied on superficial occlusal dentin according to the manufacturer's instructions and cured with one of the four curing times. Composite resin cylinder, 2.35㎜ in diameter, were built on the cured adhesive and light-cured for 40s. SBS were measured after 24h from the bonding using a universal testing machine (crosshead speed 1.0 ㎜/min). The relative thickness of the OIL and the degree of conversion (DC) were determined from the adhesive on a slide glass using FT-NIR in an absorbance mode. Data were analysed with One-way ANOVA and Duncan's multiple test (p〈0.05), Results:With increasing cure time, although there were no significant difference in th SBS of One-step and Adper Prompt (p〉0.05), those of All Bond 2 decreased significantly (p〈0.05). The relative thicknesses of the OIL on each adhesive were not affected by the cure time (p〉0.05). Although the DC of All-Bond 2 were statistically not different with increasing cure time (p〉0.05), those of One-Step and Adper Prompt showed an increasing trends with increasing cure time (p〈0.05). Conclusions:Increasing light-curing time did not affect on the relative thickness of the OIL of the adhesives, and in turn, on the SBS to dentin.

Effect of cavity shape, bond quality and volume on dentin bond strength (와동의 형태, 접착층의 성숙도, 및 와동의 부피가 상아질 접착력에 미치는 영향)

  • Lee, Hyo-Jin;Kim, Jong-Soon;Lee, Shin-Jae;Lim, Bum-Soon;Baek, Seung-Ho;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.6
    • /
    • pp.450-460
    • /
    • 2005
  • The aim of this study was to evaluate the effect of cavity shape, bond quality of bonding agent and volume of resin composite on shrinkage stress developed at the cavity floor. This was done by measuring the shear bond strength with respect to iris materials (cavity shape , adhesive-coated dentin as a high C-factor and Teflon-coated metal as a low C-factor), bonding agents (bond quality: $Scotchbond^{TM}$ Multi-purpose and Xeno III) and iris hole diameters (volume; 1mm or 3mm in $diameter{\times}1.5mm$ in thickness). Ninety-six molars were randomly divided into 8 groups ($2{\times}2{\times}2$ experimental setup). In order to simulate a Class I cavity, shear bond strength was measured on the flat occlusal dentin surface with irises. The iris hole was filled with Z250 restorative resin composite in a bulk-filling manner. The data was analyzed using three-way ANOVA and the Tukey test. Fracture mode analysis was also done When the cavity had high C-factor, good bond quality and large volume, the bond strength decreased significantly The volume of resin composite restricted within the well-bonded cavity walls is also be suggested to be included in the concept of C-factor, as well as the cavity shape and bond quality. Since the bond quality and volume can exaggerate the effect of cavity shape on the shrinkage stress developed at the resin-dentin bond, resin composites must be filled in a method, which minimizes the volume that can increase the C-factor.

Effects of Thermal and Mechanical Fatigue Stress on Bond Strength in Bracket Base Configurations (열적, 기계적 피로응력이 교정용 브라켓의 결합강도에 미치는 영향)

  • Kim, Jong-Ghee;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.30 no.5 s.82
    • /
    • pp.625-642
    • /
    • 2000
  • The purpose of this study is to evaluate the effects of mechanical and thermal fatigue stress on the shear, tensile and shear-tensile combined bond strengths(SBS, TBS, CBS) in various orthodontic brackets bonded to human premolars with chemically cured adhesive(Ortho-one, Bisco, USA). Five types of commercially available metal brackets with various bracket base configurations of Photoetched base(Tomy, Japan), Non-Etched Foil Mesh base(Dentaurum, Germany), Micro-Etched Foil Mesh base(Ortho Organizers, USA), Chessboard base(Daesung, Korea), and Integral base(3M Unitek, USA) were used. Samples were divided into 3 groups, the first group was acted with shear-tensile combined loads($45^{\circ}$) of 200g for 4 weeks(mechanical fatigue stress), the second group was subjected to the 5,000 thermocycles of 15 second dwell time each in $5^{\circ}C\;and\;55^{\circ}C$ baths(thermal fatigue stress), and the third group was the control. Bond strengths were measured at the crosshead speed of 0.5mm/min. The cross-section of bracket base/adhesive interface and the fracture surface were examined with the stereoscope and the scanning electron microscope. The resin remnant on bracket base surface was assessed by ART(Adhesive Remnant Index). The obtained results were summarized as follows, 1. In static bond strength, Photoetched base bracket showed the maximum bond strength and Integral base bracket showed the minimum bond strength(p<0.05). In all brackets, shear bond strength(SBS) was in the greatest value and shear-tensile combined strength(CBS) was in the least value(p<0.05). 2. After mechanical fatigue test, Photoetched base bracket showed the maximum bond strength and Integral base bracket showed the minimum bond strength(p<0.05). In Photoetched base bracket and Micro-Etched Foil Mesh base bracket, shear bond strength(SBS), tensile bond strength(TBS) and shear-tensile combined strength(CBS) were decreased after mechanical fatigue test(p

  • PDF

Study on Overcoming Interference Factor by Automatic Synthesizer in Endotoxin Test (내독소 검사에서 자동합성장치에 따른 간섭요인 극복에 대한 연구)

  • Kim, Dong Il;Kim, Si Hwal;Chi, Yong Gi;Seok, Jae Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.3-6
    • /
    • 2012
  • Purpose : Samsung medical ceter shall find a cause of the interference factor and suggest a solution for it. Materials and Methods : A sample of $^{18}F$-FDG, radioactive pharmaceuticals produced by TRACERlab MX and FASTlab synthesizer. Gel-clot method uses Positive control tube and single test tube. Kinetic chromogenic method uses ENDOSAFE-PTS produced by Charles River. Results : According to Gel clot method of Endotoxin Tests at FASTlab, both turbidity and viscosity increased at 40-fold dilution and Gel clot was detected. In case of TRACERlab MX, Gel clot was detected in most of samples but intermittently not in a few of them. When using ENDOSAFE-PTS, sample CV (Coefficient of Variation) of FASTlab is 0% at all dilution rates whereas spike CV is 0% at 1-fold dilution, 0~35% at 10-fold, 3.6~12.9% at 20-fold, 5.2~7.1% at 30-fold, 1.1~17.4% at 40-fold, spike recovery; 0% at one-fold, 25 ~ 58% at 10-fold, 50 ~ 86% at 20-fold, 70~92% at 30-fold, and 75~120% at 40-fold. Sample CV of TRACERlab MX, is 0% at all dilution rates whereas spike CV is 1.4~4.8% at one-fold dilution, 0.6~19.9% at 10-fold, spike recovery; 35~72% at one-fold dilution and 77~107% at 10-fold. Conclusion : Gel clot does not seem to occur probably to H3PO4 which engages in bonding with Mg2+ion contributing gelation inside PCT. Dilution which is identical to reducing the amount of H3PO4, could remove interfering effects accordingly. Spike recovery was obtained within 70~150% - recommended values of supplier - at 40-fold dilution even in kinetic chromogenic method.

  • PDF

Effect of internal gap on retentivity in implant fixed prosthesis with lingual slot (설측 슬롯을 부여한 임플란트 고정성 보철물에서 내면 간격이 유지력에 미치는 영향)

  • Kim, Tae-Kyun;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.206-211
    • /
    • 2018
  • Purpose: Recently, a method of forming a slot in the prosthesis lingual has been introduced to solve the occlusal and aesthetic disadvantages of screw-retained prosthesis in the manufacture of implant-fixed prosthesis and to ensure retrievability in cement retained prostheses. The purpose of this study is to investigate the effect of the internal gap on the removal of the prosthesis in the preparation of cement-retained implant prostheses with lingual slots. Materials and methods: Titanium abutment and internal gap of the zirconia prosthesis to be attached to the upper part were set to 30, 35, and $50{\mu}m$, respectively. Three for each type total 15 were produced for each type. The zirconia prosthesis formed a retrievable cement-type slot with a space of 1 mm at the location where the titanium abutment meets the shelf area. Autocatalytic resin cement was used for bonding of abutment and zirconia prosthesis, and the maximum removal stress value was measured in units of Ncm by using the customized equipment of the cemented specimen. The Kruskal-Wallis test was used to compare the three groups by statistical analysis (${\alpha}=.05$), modified by post hoc test the Mann-Whitney U-test and the Bonferroni correction method were used to compare the two methods (${\alpha}=.017$). Results: There was no statistically significant difference in removal stress between the $30{\mu}m$ group and the $35{\mu}m$ group in the internal gap (P = .032), and there was a significant difference between the $30{\mu}m$ group and the $50{\mu}m$ group, between the $35{\mu}m$ group and the $50{\mu}m$ group (P < .017). Conclusion: Thus, the internal gap of computer-aided design affected the retention between the zirconia prosthesis and the titanium abutment.