• Title/Summary/Keyword: Bonding Quality

Search Result 276, Processing Time 0.025 seconds

A study on the color controlled of painter's work (페인트 도장공사의 색관리에 관한 연구)

  • Shim, Myung-Sup;Lee, Hyun-Jeong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.1
    • /
    • pp.107-114
    • /
    • 2003
  • This study aims to find methods that prevents aging of buildings paint coating and that limits defects in construction. Defects in painting can occur in four stages: pure paint, during painting, after the paint coating has dried, and after some period of time has passed after coating. Paint may become bad due to precipitation of pigments, formation of membranes, and seeding during manufacturing. Therefore, it is important that the paint is well mixed and kept airtight at a cool, dark place. Indents, paint brush strokes, orange peel, separation of colors, and paint running and spreading during the paint work process can be prevented by using high quality materials and applying a high-level of construction method. After the paint coating has dried, boiling, yellowing, poor drying, poor bonding, and/or glen deficiency may occur. These are influenced by the levels of cleanness of the dried product, drying temperature and hydration. Then, when the coating has been left dried for some period of time, cracking, peeling, scaling, swelling, discoloring, and/or rusting may develop due to the ultraviolet and contaminants in the air. Since these defects occur due to inappropriate construction schedule and/or hot and humid condition, one must use weatherproof materials. Furthermore, poor paint color may be caused by contamination in the sample plate, discoloration, and/or discrepancies in colors which are due to material differences, level of glossiness, degree of dispersion, dual color property of metallic colors, precipitation of pigments, etc. One should achieve reduction in construction cost and effectiveness in paint work by limiting contaminations in the construction site and strictly observing to construction regulations.

High Temperature Properties in Finishing Mortars of Exterior Insulation Finishing System Using Fly Ash and Waste Glass Powder (플라이애시와 폐유리분말을 사용한 외단열용 마감모르타르의 고온 특성)

  • Song, Hun;Shin, Hyeon Uk
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.64-72
    • /
    • 2019
  • Fly ash has different chemical composition depending on the type and quality of flaming coal. Fly ash is classified according to carbon content and particle size. Waste glass powder is manufactured by crushing glass. Exterior Insulation Finish System (EIFS) is generally applied by using poly-styrene foam which is economical and has excellent thermal insulation performance. However, poly-styrene foam has excellent insulation performance, but it is vulnerable to fire, which is becoming a serious problem. In this study, using a fly ash and waste glass powder to produce a finishing mortar at high temperatures. Also, High temperature strength and flame retardant properties were tested according to the cover thickness. From the test result, finishing mortar prepared using fly ash and waste glass powder is due to the improved heat resistance by alkali-activated bonding. However, since the strength decreases at high temperatures, it is necessary to select an appropriate mixing proportion.

Properties of Citric Acid-bonded Composite Board from Elephant Dung Fibers

  • Widyorini, Ragil;Dewi, Greitta Kusuma;Nugroho, Widyanto Dwi;Prayitno, Tibertius Agus;Jati, Agus Sudibyo;Tejolaksono, Muhammad Nanang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.132-142
    • /
    • 2018
  • An elephant digests only around 30~45% of what it consumes; therefore the undigested material mainly passes as intact fibres. Elephant food is usually composed of grass, leaves, twigs, bark, fruit and seed pods. This research aimed to utilize the elephant dung fibers as material for composite board and citric acid as a bonding agent. Citric acid contents in this research were set at 0 wt% (binderless composite board), 10 wt%, 20 wt%, and 30 wt% based on dry weight particles, while the target density was set at $0.8g/cm^3$. Pressing temperatures were set at $180^{\circ}C$ and $200^{\circ}C$ with the pressing time was 10 minutes. Physical and mechanical properties tests were then performed according to Japanese Industrial Standard A 5905. The result showed that elephant dung fibers could be used as potential materials for composite board. Addition of citric acid and pressing temperature significantly increased the quality of composite board. Infrared analysis indicated that the presence of ester linkages much higher with the increasing of citric acid content and pressing temperature. The optimum properties of composite board made from elephant dung fibers could be achieved at pressing temperature of $200^{\circ}C$ and a citric acid content of 20 wt%.

The biocompatibility and mechanical properties of plasma sprayed zirconia coated abutment

  • Huang, Zhengfei;Wang, Zhifeng;Yin, Kaifeng;Li, Chuanhua;Guo, Meihua;Lan, Jing
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.157-166
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the clinical performance and reliability of plasma sprayed nanostructured zirconia (NSZ) coating. MATERIALS AND METHODS. This study consisted of three areas of analysis: (1) Mechanical property: surface roughness of NSZ coating and bond strength between NSZ coating and titanium specimens were measured, and the microstructure of bonding interface was also observed by scanning election microscope (SEM). (2) Biocompatibility: hemolysis tests, cell proliferation tests, and rat subcutaneous implant test were conducted to evaluate the biocompatibility of NSZ coating. (3) Mechanical compatibility: fracture and artificial aging tests were performed to measure the mechanical compatibility of NSZ-coated titanium abutments. RESULTS. In the mechanical study, 400 ㎛ thick NSZ coatings had the highest bond strength (71.22 ± 1.02 MPa), and a compact transition layer could be observed. In addition, NSZ coating showed excellent biocompatibility in both hemolysis tests and cell proliferation tests. In subcutaneous implant test, NSZ-coated plates showed similar inflammation elimination and fibrous tissue formation processes with that of titanium specimens. Regarding fatigue tests, all NSZ-coated abutments survived in the five-year fatigue test and showed sufficient fracture strength (407.65-663.7 N) for incisor teeth. CONCLUSION. In this study, the plasmasprayed NSZ-coated titanium abutments presented sufficient fracture strength and biocompatibility, and it was demonstrated that plasma spray was a reliable method to prepare high-quality zirconia coating.

Fabrication of Full-Scale Combustion Chamber of Liquid Rocket Engine for Ground Hot Firing Tests (실물형 고압 연소기의 연소시험 검증용 제작)

  • Kim Jonggyu;Seo Seonghyeon;Kim Seunghan;Han Yeoungmin;Ryu Chulsung;Seol Wooseok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.305-308
    • /
    • 2005
  • This paper presents a fabrication of a full-stale combustion chamber of a liquid rocket engine for a ground hot firing test. Engine drawings for manufacturing were prepared after conceptual and detail designs. The combustor is composed of a head and a chamber. SUS316L is used for materials of the head because of the good quality in low temperature. Inner materials of the ablative cooling chamber is silica/phenolic and outer case materials is the SUS316L. Materials of the regenerative cooling chamber are C18200 and SUS316L. After lathe, general milling and MCT machinings, components were finished by electrolytic polishing. A brazing method was applied for bonding the injectors and the injector plate, the regenerative cooling chamber because of structure configurations.

  • PDF

Mechanism of a grafting machine using the insertion method (삽접법을 이용한 기계접목 메카니즘 연구)

  • Park, Kyu-Sik;Lee, Ki-Myung;Kim, Joo-Yup
    • Current Research on Agriculture and Life Sciences
    • /
    • v.15
    • /
    • pp.115-122
    • /
    • 1997
  • Grafting is an important skill for the stable supply and production of high quality. However, the shortage of skillful labor has become great difficulty for a mass production of grafting-seedling. In this study, a suitable mechanism for a grafting machine was developed. The following summarize the results of this study: 1. An insertion method was selected for mechanism of the grafting machine without bonding agent, clip, pin. This insertion-grafting method can be applicable to general vegetables and a mass production system. In addition to, this method is suitable for developing the grafting mechanism. 2. Growing point was removed while remaining both cotyledons on rootstock. The productivity of this system was five fold greater than the one of an experienced labor. 3. The rootstock processing was placed on left and scion processing unit was placed on right of the system, then processed rootstock and scion graft by rotating $180^{\circ}$. 4. The efficiency tests on mechanical grafting rate showed 98%.

  • PDF

Properties of Particleboard Using Byproduct of Plywood Manufacture - Evaluation on the Elements of Surface Layer and Pre-treatment of Particles (합판 공장 부산물을 이용한 파티클보드의 물성에 관한 연구 - 표층 구성요소 및 파티클 전처리 여부에 따른 비교 -)

  • Hwang, Jung Taek;Pi, Duck Won;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.33-41
    • /
    • 2013
  • This study was performed to analyse cause of quality deterioration using byproduct of plywood and to determine physical and mechanical properties of particleboard used new bonding condition we found. The result of bending strength of Com-Ply board using EMDI is 57.7 $N/mm^2$ on linear direction and 25.1 $N/mm^2$ on vertical direction. EMDI has better water-resisting qualities than Urea formaldehyde adhesive according to result of thickness swelling and water absorption test. Pre-treatment soaked particle 72 hours in water caused increase of HCHO emission.

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

Re-Repair Method for Deterioration of Partial Depth Repair Section in Portland Cement Concrete Pavement (콘크리트 포장 부분단면보수 재파손 구간의 적정 보수 방안)

  • Lee, Yong Hyeon;Kim, Hyun Seok;Jung, Won Kyong;Oh, Han Jin;Kim, Hyung Bae
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.33-42
    • /
    • 2017
  • PURPOSES : The purpose of this study is to suggest the construction and quality control method for the re-repair of a deteriorated partial depth repair for sections of Portland cement concrete pavement. METHODS : An experimental construction was conducted to extend the repair width for removing an existing repair section. A removal method was used to ensure early performance for a deteriorated partial depth repair section. Bond strength and split tensile strength were measured at the near vertical interface layer between the existing pavement and repair material. The area was analyzed for various conditions such as the extended repair area and the removing method of the existing repair section. RESULTS : As a result of analysis of bond strength and split tensile strength, the bonding performance of a milling removed section was improved over a cutting and hand breaker removed section. The bond strength was analyzed to increase slightly as the extended repair width for removing the existing repair section increased. The split tensile strength did not show a clear relationship to an increased extended repair width of an existing removed repair section. CONCLUSIONS : The milling removal method should be applied in the removal of existing deteriorated partial depth repair sections. The extended repair width for a re-repair section should be wider than the existing partial depth repair with at least a 75-mm length and width for the bond strength and the split tensile strength.

Characterization of TiN Layered Substrate using Leaky Rayleigh Surface Wave (누설 레일리 표면파를 이용한 TiN 코팅 부재의 특성평가)

  • Kwon, Sung-Duk;Kim, Hak-Joon;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.1
    • /
    • pp.7-11
    • /
    • 2006
  • Since ceramic layers coated on machinery components inevitably experience the changes in their properties it is necessary to evaluate the characteristics of ceramic coating layers nondestructively for a reliable use of coated components and 4heir remaining life prediction. To address such a need, in the present study, an ultrasonic backward radiation technique is applied to investigate the characteristics of leaky Rayleigh surface waves propagating through the very thin TiN ceramic layers coated on AISI 1045 steel or austenitic 304 steel substrate with three different conditions of surface roughness, coating layer thickness and wear condition. In the experiments performed in the present work, the peak angle and the peak amplitude of ultrasonic backward radiation profile varied sensitively according to three specimen preparation renditions. in fact, this result demonstrates a high possibility of the ultrasonic backward radiation as an effective tool for the nondestructive characterization of the resting layers even in such a thin regime.