• Title/Summary/Keyword: Bonded interface

Search Result 418, Processing Time 0.032 seconds

EFFECTS OF CHEMICALLY CURED RESIN AND LIGHT CURED RESIN ON SHEAR BOND STRENGTH OF METAL BRACKET AND CERAMIC BRACKET (화학중합형 및 광중합형 레진접착제가 금속 및 도재브라켓의 전단결합강도에 미치는 영향)

  • Yoon, Duk-Sang;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.24 no.1 s.44
    • /
    • pp.125-134
    • /
    • 1994
  • This study was designed for comparison of shear bond strengths and failure patterns of four experimental groups which combinated mesh-backed metal brackets and texture based ceramic brackets (Transcend series $2000^{(TM)}$) with chemically cured resin (Mono $Lok2^{(TM)}$) and visible light cured resin $(Transbond^{(TM)})$. Brackets were bonded on the extracted human bicuspids, after etching them by manufacturer's recommand, and the shear bond strengths were measured on the Instron machine after 24 hrs passed in the $37^{\circ}C$ water bath. The results were as follows. 1. Ceramic brackets, transcend series $2000^{(TM)}$, bonded with $MonoLok2^{(TM)}$ showed statistically higher shear bond strength than mesh-backed metal brackets bonded with $MonoLok2^{(TM)}$. 2. There was no significant difference in shear bond strengths between metal and ceramic brackets bonded with $(Transbond^{(TM)})$. 3. Ceramic brackets bonded with both $(Transbond^{(TM)})$) and $MonoLok2^{(TM)}$ showed primarily fractures between brackets adhesive interface. 4. Enamel crack was not found in anyone specimen.

  • PDF

Influence of imperfectly bonded piezoelectric layer with irregularity on propagation of Love-type wave in a reinforced composite structure

  • Singh, Abhishek Kumar;Chaki, Mriganka Shekhar;Hazra, Bristi;Mahto, Shruti
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.325-344
    • /
    • 2017
  • The present paper investigates the propagation of Love-type wave in a composite structure comprised of imperfectly bonded piezoelectric layer with lower fiber-reinforced half-space with rectangular shaped irregularity at the common interface. Closed-form expression of phase velocity of Love-type wave propagating in the composite structure has been deduced analytically for electrically open and short conditions. Some special cases of the problem have also been studied. It has been found that the obtained results are in well-agreement to the Classical Love wave equation. Significant effects of various parameters viz. irregularity parameter, flexibility imperfectness parameter and viscoelastic imperfectness parameter associated with complex common interface, dielectric constant and piezoelectric coefficient on phase velocity of Love-type wave has been reported. Numerical computations and graphical illustrations have been carried out to demonstrate the deduced results for various cases. Moreover, comparative study has been performed to unravel the effects of the presence of reinforcement and piezoelectricity in the composite structure and also to analyze the existence of irregularity and imperfectness at the common interface of composite structure in context of the present problem which serves as a salient feature of the present study.

Nonlinear analysis of RC beams strengthened by externally bonded plates

  • Park, Jae-Guen;Lee, Kwang-Myong;Shin, Hyun-Mock;Park, Yoon-Je
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.119-134
    • /
    • 2007
  • External bonding of steel or FRP plates to reinforced concrete (RC) structures has been a popular method for strengthening RC structures; however, unexpected premature failure often occurs due to debonding between the concrete and the epoxy. We proposed a Coulomb criterion with a constant failure surface as the debonding failure criterion for the concrete-epoxy interface. Diagonal shear bonding tests were conducted to determine the debonding properties that were related to the failure criterion, such as the angle of internal friction and the coefficient of cohesion. In addition, an interface element that utilized the Coulomb criterion was implemented in a nonlinear finite element analysis program to simulate debonding failure behavior. Experimental studies and numerical analysies on RC beams strengthened by an externally bonded steel or FRP plate were used to determine the range of the coefficient of cohesion. The results that were presented prove that premature failure loads of strengthened RC beams can be predicted with using the bonding properties and the finite element program with including the proposed Coulomb criterion.

Development of the Dynamic Photoelastic Hybrid Method for Propagating Interfacial Crack of Isotropic/Orthotropic Bi-materials (등방성/직교이방성 이종재료의 진전 계면균열에 대한 동적 광탄성 실험 하이브리드 법 개발)

  • Hwang, Jae-Seok;Sin, Dong-Cheol;Kim, Tae-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1055-1063
    • /
    • 2001
  • When the interfacial crack of isotropic/orthotropic bi-materials is propagated with constant velocity along the interface, stress and displacement components are derived in this research. The dynamic photoelastic experimental hybrid method for the bimaterial is introduced. It is assured that stress components and dynamic photoelastic hybrid developed in this research are valid. Separating method of stress components is introduced from only dynamic photoelastic fringe patterns. Crack propagating velocity of interfacial crack is 69∼71% of Rayleigh wave velocity of epoxy resin. The near-field stress components of bonded interface of bimaterial are similar with those of pure isotopic material and two dissimilar isotropic bimaterials under static or dynamic loading, but very near-field stress components of bonded interface of bimaterial are different from those.

Boundary Element Analysis of Stress Singularity at the Interface Corner of Viscoelastic Adhesive Layer Bonded Between Rigid Adherends (강체모재들을 결합하고 있는 점탄성 접착재층의 계면모서리에서 발생하는 응력특이성의 경제요소해석)

  • 이상순;박준수
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 1997
  • This paper concerns the stress singularity at the interface corner of the viscoelastic adhesive layer bonded between rigid adherends, subjected to a uniform transverse tensile strain. The characteristic equation is derived in the Laplace transformed space, following Williams, and the transformed characteristic equation is inverted analytically into real time space for the viscoelastic model considered here. The order of the singularity is obtained numerically. The time-domain boundary element method is employed to investigate the nature of stresses along the interface. Numerical results show that the order of the singularity increases with time while the free-edge stress intensity factors are relaxed with time.

  • PDF

Fluxless Plasma Soldering with Different Thickness of UBM Layers on Si-Wafer (Si 웨이퍼의 UBM층 도금두께에 따른 무플럭스 플라즈마 솔더링)

  • 문준권;강경인;이재식;정재필;주운홍
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.373-378
    • /
    • 2003
  • With increasing environmental concerns, application of lead-free solder and fluxless soldering process have been taken attention from the electronic packaging industry. Plasma treatment is one of the soldering methods for the fluxless soldering, and it can prevent environmental pollution cased by flux. On this study fluxless soldering process under $Ar-H_2$plasma using lead free solders such as Sn-3.5 wt%Ag, Sn-3.5 wt%Ag-0.7 wt%Cu and Sn-37%Pb for a reference was investigated. As the plasma reflow has higher soldering temperature than normal air reflow, the effects of UBM(Under Bump Metallization) thickness on the interfacial reaction and bonding strength can be critical. Experimental results showed in case of the thin UBM, Au(20 nm)/Cu(0.3 $\mu\textrm{m}$)/Ni(0.4 $\mu\textrm{m}$)/Al(0.4 $\mu\textrm{m}$), shear strength of the soldered joint was relatively low as 19-27㎫, and it's caused by the crack observed along the bonded interface. The crack was believed to be produced by the exhaustion of the thin UBM-layer due to the excessive reaction with solder under plasma. However, in case of thick UBM, Au(20 nm)/Cu(4 $\mu\textrm{m}$)/Ni(4 $\mu\textrm{m}$)/Al(0.4 $\mu\textrm{m}$), the bonded interface was sound without any crack and shear strength gives 32∼42㎫. Thus, by increasing UBM thickness in this study the shear strength can be improved to 50∼70%. Fluxed reflow soldering under hot air was also carried out for a reference, and the shear strength was 48∼52㎫. Consequently the fluxless soldering with plasma showed around 65∼80% as those of fluxed air reflow, and the possibility of the $Ar-H_2$ plasma reflow was evaluated.

Interfacial Fracture Toughness Measurement of Composite/metal Bonding (복합재료/금속 접착 계면의 파괴인성치 측정)

  • Kim, Won-Seock;Lee, Jung-Ju
    • Composites Research
    • /
    • v.21 no.4
    • /
    • pp.7-14
    • /
    • 2008
  • Prediction of the load-bearing capacity of an adhesive-bonded Joint is of practical importance for engineers. This paper introduces interface fracture mechanics approach to predict the load-bearing capacity of composite metal bonded joints. The adhesion strength of composite/steel bonding is evaluated in terms of the energy release rate of an interfacial crack and the fracture toughness of the interface. Virtual track closure technique (VCCT) is used to calculate energy release rates, and hi-material end-notched flexure (ENF) specimens are devised to measure the interfacial fracture toughness. Bi-material ENF specimens gave consistent mode II fracture toughness $(G_{IIc})$ values of the composite/steel interface regardless of the thickness of specimens. The critical energy release rates of double-lap joints showed a good agreement with the measured fracture toughness. Therefore. the energy-based interfacial fracture characterization can be a practical engineering tool for predicting the load-bearing capacity of bonded joints.

Properties of Light-weight Expanded Bonded Leather Using Thermal Expandable Microspheres (열 팽창성 Microsphere를 적용한 경량 발포 재생피혁 특성 분석)

  • Shin, Eun-Chul;Kim, Won-Ju;Kim, Yeong-Woo
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.81-85
    • /
    • 2020
  • Shaving dust is a collagen fiber that is the leather waste occurred for thickness adjustment during the natural leather manufacturing process, and causes problems such as an environmental contamination because of a chromium (Cr) contained when it comes to reclaiming process. Various studies applying the shaving dust are currently being conducted in many countries across the world with an initiative by the EU. Of those applications, the bonded leather is being highlighted as a substitute for natural leather. Since the bonded leather, however, uses latex as a binder, accordingly it entails a high weight and a poor ventilation, which are deemed as disadvantages due to its dense internal tissues compared to other synthetic leathers. To address such disadvantages, this study employed the thermally expandable micro sphere to improve its air permeability and light weight by alleviating the internal structure. This is a study on the manufacturing of light bonded leather using the shaving dusts. In the study, the shaving dusts were forced to foam under 100~120℃ considering the heat resistance of collagen fiber after applying the thermally expandable micro sphere, and then the tendency was analyzed. In the analysis results, the most excellent foaming rate was exhibited when the shaving dusts were treated under 120℃ for 8 minutes and the variation of internal structure according to a foaming was observed through SEM analysis for the cross-section of the bonded leather.

Interface Characteristics of Epoxy Composite Treated with Silane Coupling Agent (실란 결합제 처리된 에폭시 수지 복합재료의 계면 특성)

  • Lee, Jae-Yeong;Lee, Hong-Gi;Sim, Mi-Ja;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1009-1013
    • /
    • 2001
  • The effects of coupling agent on the interface characteristics between epoxy resin and natural zeolite were studied by SEM, optical microscope and universal testing machine (UTM). Epoxy resin as a matrix was diglycidyl ether of bisphenol A (DGEBA)/4,4'-methylene dianiline (MDA)/malononitrile (MN) system and natural zeolite as an inorganic fillet was produced in Korea. With the increment of zeolite content, tensile strength decreased and it was due to the different elastic moduli of two materials. When external stress was loaded on the composites, the stress concentrated on the weakly bonded interface and crack grew easily. To improve the interface characteristics, the surface of the natural zeolite was treated with the silane coupling agent and it was found that the tensile strength was increased. The morphology of the interface showed that the bonding characteristics were modified by coupling agent.

  • PDF

DETECTION OF INTERFACIAL CRACK LENGTH BY USING ULTRASONIC ATTENUATION COEFFICIENTS ON ADHESIVELY BONDED JOINTS

  • Chung, N.Y.;Park, S.I.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.303-309
    • /
    • 2004
  • In this paper, an interfacial crack length has been detected by using the ultrasonic attenuation coefficient on the adhesively bonded double-cantilever beam (DCB) joints. The correlations between energy release rates which were investigated by experimental measurement, the boundary element method (BEM) and Ripling's equation are compared with each other. The experimental results show that the interfacial crack length for the ultrasonic attenuation coefficient and energy release rate increases proportionally. From the experimental results, we propose a method to detect the interfacial crack length by using the ultrasonic attenuation coefficient and discuss it.