• Title/Summary/Keyword: Bonded Materials

Search Result 961, Processing Time 0.04 seconds

Sintered-reaction Bonded Silicon Nitride Densified by a Gas Pressure Sintering Process - Effects of Rare Earth Oxide Sintering Additives

  • Lee, Sea-Hoon;Ko, Jae-Woong;Park, Young-Jo;Kim, Hai-Doo;Lin, Hua-Tay;Becher, Paul
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.318-324
    • /
    • 2012
  • Reaction-bonded silicon nitrides containing rare-earth oxide sintering additives were densified by gas pressure sintering. The sintering behavior, microstructure and mechanical properties of the resultant specimens were analyzed. For that purpose, $Lu_2O_3-SiO_2$ (US), $La_2O_3$-MgO (AM) and $Y_2O_3-Al_2O_3$ (YA) additive systems were selected. Among the tested compositions, densification of silicon nitride occurred at the lowest temperature when using the $La_2O_3$-MgO system. Since the $Lu_2O_3-SiO_2$ system has the highest melting temperature, full densification could not be achieved after sintering at $1950^{\circ}C$. However, the system had a reasonably high bending strength of 527 MPa at $1200^{\circ}C$ in air and a high fracture toughness of 9.2 $MPa{\cdot}m^{1/2}$. The $Y_2O_3-Al_2O_3$ system had the highest room temperature bending strength of 1.2 GPa.

Growth of Interfacial Reaction Layer by the Isothermal Heat Treatment of Cast-Bonded Fe-C-(Si)/Nb/Fe-C-(Si) (Nb/Fe-C-(Si) 주조접합재에서 등온열처리시 계면반응층의 성장에 관한 연구)

  • Jung, B.H.;Kim, M.G.;Jeong, S.H.;Park, H.I.;Ahn, Y.S.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.5
    • /
    • pp.260-266
    • /
    • 2003
  • In order to study the interfacial reaction between Nb thin sheet and Fe-C-(Si) alloy with different Chemical compositions, they were cast-bonded. The growth of carbide layer formed at the interface after isothermal heat treatment at 1173K, 1223K, 1273K and 1323K for various times was investigated. The carbide formed at the interface was NbC and the thickness of NbC layer was increased linearly in proportional to the heat treating time. Therefore, It was found that the growth of NbC layer was controlled by the interfacial reaction. The growth rate constant of NbC layer was slightly increased with increase of carbon content when the silicon content is similar in the cast irons. However, as silicon content increases with no great difference in carbon content, the growth of NbC layer was greatly retarded. The calculated activation energy for the growth of NbC layer was varied in the range of 447.4~549.3 kJ/moI with the compositions of cast irons.

Effect of Post-Annealing Conditions on Interfacial Adhesion Energy of Cu-Cu Bonding for 3-D IC Integration (3차원 소자 집적을 위한 Cu-Cu 접합의 계면접착에너지에 미치는 후속 열처리의 영향)

  • Jang, Eun-Jung;Pfeiffer, Sarah;Kim, Bi-Oh;Mtthias, Thorsten;Hyun, Seung-Min;Lee, Hak-Joo;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.204-210
    • /
    • 2008
  • $1.5\;{\mu}m$-thick copper films deposited on silicon wafers were successfully bonded at $415^{\circ}C$/25 kN for 40 minutes in a thermo-compression bonding method that did not involve a pre-cleaning or pre-annealing process. The original copper bonding interface disappeared and showed a homogeneous microstructure with few voids at the original bonding interface. Quantitative interfacial adhesion energies were greater than $10.4\;J/m^2$ as measured via a four-point bending test. Post-bonding annealing at a temperature that was less than $300^{\circ}C$ had only a slight effect on the bonding energy, whereas an oxygen environment significantly deteriorated the bonding energy over $400^{\circ}C$. This was most likely due to the fast growth of brittle interfacial oxides. Therefore, the annealing environment and temperature conditions greatly affect the interfacial bonding energy and reliability in Cu-Cu bonded wafer stacks.

Synthesis of Carbon Nano Silicon Composites for Secondary Battery Anode Materials Using RF Thermal Plasma (RF 열플라즈마를 이용한 이차전지 음극재용 탄소나노실리콘복합소재 합성)

  • Soon-Jik Lee;Dae-Shin Kim;Jeong-Mi Yeon;Won-Gyu Park;Myeong-Seon Shin;Seon-Yong Choi;Sung-Hoo Ju
    • Korean Journal of Materials Research
    • /
    • v.33 no.6
    • /
    • pp.257-264
    • /
    • 2023
  • To develop a high capacity lithium secondary battery, a new approach to anode material synthesis is required, capable of producing an anode that exceeds the energy density limit of a carbon-based anode. This research synthesized carbon nano silicon composites as an anode material for a secondary battery using the RF thermal plasma method, which is an ecofriendly dry synthesis method. Prior to material synthesis, a silicon raw material was mixed at 10, 20, 30, 40, and 50 wt% based on the carbon raw material in a powder form, and the temperature change inside the reaction field depending on the applied plasma power was calculated. Information about the materials in the synthesized carbon nano silicon composites were confirmed through XRD analysis, showing carbon (86.7~52.6 %), silicon (7.2~36.2 %), and silicon carbide (6.1~11.2 %). Through FE-SEM analysis, it was confirmed that the silicon bonded to carbon was distributed at sizes of 100 nm or less. The bonding shape of the silicon nano particles bonded to carbon was observed through TEM analysis. The initial electrochemical charging/discharging test for the 40 wt% silicon mixture showed excellent electrical characteristics of 1,517 mAh/g (91.9 %) and an irreversible capacity of 133 mAh/g (8.1 %).

Comparative Study on the Bond Strength between Direct Tensile Test and Indirect Tensile Test for Bonded Concrete Overlay (직접인장 및 간접인장 실험방법에 따른 접착식 콘크리트 덧씌우기의 부착강도 비교 고찰)

  • Kim, Young Kyu;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1153-1163
    • /
    • 2013
  • Bonded concrete overlay is a favorable maintenance method since the material properties are similar to existing concrete pavements. In addition, bonded concrete overlay has advantage of structural performance based on being bonded together, both for the overlay layer and the existing pavement which perform as one monolithic layer. Therefore, it is important to have a suitable bond strength criteria for long term performance of bonded concrete overlay. This study aimed to investigate the affecting of bond strength on various bond characteristics, and to compare the bond strength between direct tensile test and indirect tensile test due to various conditions such as overlay materials, compressive and flexure strength of existing pavement, and deterioration status of existing pavement. As a result of this study, bond strength occurred by both of direct and indirect tensile test due to monotonic load is highly correlated such as coefficient of determination of 0.75 and P-value of 0.002. However, bond strength by indirect tensile test was relatively higher than bond strength by direct tensile test. It was known that correlation between direct and indirect tensile test was possible to use the characteristics analysis of bond fatigue behavior based on bond strength due to cyclic load which can simulate real field behavior of bonded concrete overlay.

A stress-function variational approach toward CFRP -concrete interfacial stresses in bonded joints

  • Samadvand, Hojjat;Dehestani, Mehdi
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.43-54
    • /
    • 2020
  • This paper presents an innovative stress-function variational approach in formulating the interfacial shear and normal stresses in an externally bonded concrete joint using carbon fiber-reinforced plastic (CFRP) plies. The joint is subjected to surface traction loadings applied at both ends of the concrete substrate layer. By introducing two interfacial shear and normal stress functions on the CFRP-concrete interface, based on Euler-Bernoulli beam idea and static stress equations of equilibrium, the entire stress fields of the joint were determined. The complementary strain energy was minimized in order to solve the governing equation of the joint. This yields an ordinary differential equation from which the interfacial normal and shear stresses were proposed explicitly, satisfying all the multiple traction boundary conditions. Lamination theory for composite materials was also employed to obtain the interfacial stresses. The proposed approach was validated by the analytic models in the literature as well as through a comprehensive computational code generated by the authors. Furthermore, a numerical verification was carried out via the finite element software ABAQUS. In the end, a scaling analysis was conducted to analyze the interfacial stress field dependence of the joint upon effective issues using the devised code.

Corrosion Performance of Cu Bonded Grounding-Electrode by Accelerated Corrosion Test

  • Choi, Sun Kyu;Kim, Kyung Chul
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.211-217
    • /
    • 2018
  • Natural degradation of grounding-electrode in soil environment should be monitored for several decades to predict the lifetime of the grounding electrode for efficient application and management. However, long-term studies for such electrodes have many practical limitations. The conventional accelerated corrosion test is unsuitable for such studies because simulated soil corrosion process cannot represent the actual soil environment. A preliminary experiment of accelerated corrosion test was conducted using existing test standards. The accelerated corrosion test that reflects the actual soil environment has been developed to evaluate corrosion performances of grounding-electrodes in a short period. Several test conditions with different chamber temperatures and salt spray were used to imitate actual field conditions based on ASTM B162, ASTM B117, and ISO 14993 standards. Accelerated degradation specimens of copper-bonded electrodes were made by the facile method and their corrosion performances were investigated. Their corrosion rates were calculated to $0.042{\mu}m/day$, $0.316{\mu}m/day$, and $0.11{\mu}m/day$, respectively. These results indicate that accelerated deterioration of grounding materials can be determined in a short period by using cyclic test condition with salt spray temperature of $50^{\circ}C$.

Synthesis and Biocompatibility of the Hydroxyapatite Ceramic Composites from Tuna Bone(III) - SEM Photographs of Bonding Properties between Hydroxyapatite Ceramics Composites in the Simulated Body Fluid- (참치 뼈를 이용한 Hydroxyapatite 세라믹 복합체의 합성 및 생체 친화성(제3보) -인공체액에서의 Hydroxyapatite 세라믹 복합체간의 결합의 전자현미경 관찰-)

  • Kim, Se-Kwon;Choi, Jin-Sam;Lee, Chang-Kook;Byun, Hee-Guk;Jean, You-Jin;Lee, Eung-Ho;Park, In Yong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.322-329
    • /
    • 1998
  • Chemical bonding was investigated in the simulated body fluid of several selected hydroxyapatite-containing composites. The hydroxyapatite-containing composites chemically bonded with each other in the simulated body fluid after 4 weeks. Bioglass was strongly bonded in the simulated body fluid, but bonding strength was not depended on composition. Their composite bodies were chemically bonded by heterogeneous nucleation and growth at the interfaces of the specimens in the simulated body fluid.

  • PDF

Test Results and Nonlinear Analysis of RC T-beams Strengthened by Bonded Steel Plates

  • Ren, Wei;Sneed, Lesley H.;Gai, Yiting;Kang, Xin
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • This paper describes the test results and nonlinear analysis of reinforced concrete T-beams strengthened by bonded steel plates under increasing static loading conditions. The first part of this paper discusses the flexural tests on five T-beams, including the test model design (based on similarity principles), test programs, and test procedure. The second part discusses the nonlinear numerical analysis of the strengthened beams, in which a concrete damage plasticity model and a cohesive behavior were adopted. The numerical analysis results are compared with experimental data and show good agreement. The area of bonded steel plate and the anchor bolt spacing were found to have an impact on the cracking load, yield load, and ultimate load. An increase in the area of steel plate and a reduction of the anchor spacing could significantly improve the cracking and ultimate loads and decrease the damage of the beam.

On-line Cure Monitoring of Adhesive Joints by Dielectrometry (유전기법을 이용한 접착 조인트의 실시간 경화 모니터링)

  • 권재욱;진우석;이대길
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.51-58
    • /
    • 2003
  • Since the reliability of adhesively bonded joints is much dependent on the curing status of thermosetting adhesive, the on-line cure monitoring during the cure of adhesively joints could improve the quality of adhesively bonded joints. In this work, the dielectric method which measures the dissipation factor of the adhesive during the cure of joints and converts it into the degree of cure of the adhesive was devised. The relation between the dissipation factor and the degree of cure of adhesive was investigated, which could eliminate the temperature effect on the dissipation factor that is a strong function of the degree of cure and temperature of adhesive. From the investigation, it was found that the dissipation factor showed a trend similar to the cure rate of the adhesive.