• 제목/요약/키워드: Bonded Materials

검색결과 964건 처리시간 0.026초

카울플레이트 적용을 통한 라미네이트 특성 평가 (Evaluation of Laminate Property using Caulplate Application)

  • 박동철;김윤해
    • Composites Research
    • /
    • 제29권5호
    • /
    • pp.231-235
    • /
    • 2016
  • 본 연구에서는 동일한 구조의 모자형 보강재를 이용하여 일체형 동시접착 구조의 보강패널시편을 제작하였다. 일반적인 동시접착 보강패널 시편과 탄소에폭시 복합재를 이용하여 제작된 카울플레이트(Caul Plate)를 적용한 동시접착 보강패널 시편의 2가지 형태 시편을 제작하였으며 일반 동시접착 보강패널 시편에서는 패널 상에서 보강재가 적용되지 않은 부위가 적용된 부위보다 더 두꺼운 패널 두께를 가지고 그 연결부위에는 0.61 mm 높이 및 3.29 mm 길이의 플라이웨이브 현상이 나타났다. 카울플레이트가 적용된 보강패널 시편에서는 보다 균일한 압력 전달로 인하여 0.22 mm 높이와 1.37 mm 길이의 완화된 웨이브 현상을 보이면서 약 50% 이상 개선된 결과를 얻을 수 있었다.

2-unit cantilever 레진접착성 가공의치 (resin-bonded fixed partial denture) 임상의 현재 (CLINICAL PERSPECTIVES ON 2-UNIT CANTILEVERED RESIN-BONDED FIXED PARTIAL DENTURE)

  • 이양진;조리라;박찬진
    • 대한치과보철학회지
    • /
    • 제41권1호
    • /
    • pp.81-88
    • /
    • 2003
  • Resin-bonded bridge has been an alternative to conventional bridge, since resin-bonded bridge has many attractive advantages such as minimal tooth preparation, short chair time and low cost over conventional bridge. Unfortunately, however, it was reported that resin-bonded bridge showed high failure rate from debonding of retainer in spite of consecutive advances in preparation and materials. And it was shown that multiple abutments were more likely to fail. The majority of debonding failure was considered due to the mobility of the abutment during function. In this view, recently, modification in resin-bonded bridge design was tried. Single retainer, single pontic. 2-unit cantilevered resin-bonded bridge was applied to clinical performance and was shown as retentive or more retentive than fixed-fixed type resin-bonded bridge. This was consistent with the results of studies in 2-unit cantilevered resin-bonded bridges made with all ceramic, In-ceram. The purpose of this article was to overview principles of design and to analyze clinical results of 2-unit cantilevered resin-bonded bridge in comparison with the reports of fixed-fixed resin-bonded bridge.

이방성 희토류 본드자석용 유기 바인더에 관한 연구 (Study on Organic Binder for Anisotropic Rare-Earth Bonded Magnets)

  • 허정섭;조연화;남성철;김지경;이정구;유지훈
    • 한국자기학회지
    • /
    • 제24권3호
    • /
    • pp.86-89
    • /
    • 2014
  • 이방성 희토류 본드자석은 자성분말과 유기 바인더로 구성되며 본드자석 내에서 유기 바인더는 분말의 배향을 유리하게 하는 역할을 한다. 유기 바인더는 고분자 수지, 활제, 경화제, 커플링제 등으로 구성되며 자성분말에 적합한 유기 바인더를 제조하기 위해 본 연구에서는 다양한 성분을 선정하여 유기 바인더를 제조하였고 구성비 및 첨가량을 조절하여 이를 본드자석에 적용하였다. 특성평가를 통해 자기특성 및 기계적 특성을 측정하였고 이로부터 본드자석에 적합한 유기 바인더의 성분 및 비율을 확인하였다.

기공형성제 함량이 다공질 Mullite-Bonded SiC 세라믹스의 미세구조와 강도에 미치는 영향 (Effect of Template Content on Microstructure and Flexural Strength of Porous Mullite-Bonded Silicon Carbide Ceramics)

  • 최영훈;김영욱;우상국;한인섭
    • 한국세라믹학회지
    • /
    • 제47권6호
    • /
    • pp.509-514
    • /
    • 2010
  • Porous mullite-bonded SiC (MBSC) ceramics were fabricated at temperatures ranging from 1400 to $1500^{\circ}C$ for 2 h using silicon carbide (SiC), alumina ($Al_2O_3$), strontium oxide (SrO), and poly (methyl methacrylate-coethylene glycol dimethacrylate) (PMMA) microbeads. The effect of template content on porosity, pore morphology, and flexural strength were investigated. The porosity increased with increasing the template content at the same sintering temperature. The flexural strength showed maximum after sintering at $1450^{\circ}C$/2 h for all specimens due to small pores and dense strut. By controlling the template content and sintering temperature, it was possible to produce porous MBSC ceramics with porosities ranging from 30% to 54%. A maximum flexural strength of ~51MPa was obtained at 30% porosity when no template were used and specimens sintered at $1450^{\circ}C$/2 h.

탄소 원료가 다공질 Self-Bonded SiC (SBSC) 세라믹스의 기공율과 곡강도에 미치는 영향 (Effect of Carbon Source on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics)

  • 임광영;김영욱;우상국;한인섭
    • 한국세라믹학회지
    • /
    • 제45권7호
    • /
    • pp.430-437
    • /
    • 2008
  • Porous self-bonded silicon carbide (SBSC) ceramics were fabricated at temperatures ranging from 1700 to $1850^{\circ}C$ using SiC, silicon (Si), and three different carbon (C) sources, including carbon black, phenol resin, and xylene. The effects of the Si:C ratio and carbon source on porosity and strength were investigated as a function of sintering temperature. Porous SBSC ceramics fabricated from phenol resin showed higher porosity than the others. In contrast, porous SBSC ceramics fabricated from carbon black showed better strength than the others. Regardless of the carbon source, the porosity increased with decreasing the Si:C ratio whereas the strength increased with increasing the Si:C ratio.

Microstructural Evolution of a Cold Roll-Bonded Multi-Layer Complex Aluminum Sheet with Annealing

  • Jo, Sang-Hyeon;Lee, Seong-Hee
    • 한국재료학회지
    • /
    • 제32권2호
    • /
    • pp.72-79
    • /
    • 2022
  • A cold roll-bonding process using AA1050, AA5052 and AA6061 alloy sheets is performed without lubrication. The roll-bonded specimen is a multi-layer complex aluminum alloy sheet in which the AA1050, AA5052 and AA6061 sheets are alternately stacked. The microstructural evolution with the increase of annealing temperature for the roll-bonded aluminum sheet is investigated in detail. The roll-bonded aluminum sheet shows a typical deformation structure in which the grains are elongated in the rolling direction over all regions. However, microstructural evolution of the annealed specimen is different depending on the type of material, resulting in a heterogeneous microstructure in the thickness direction of the layered aluminum sheet. Complete recrystallization occurs at 250 ℃ in the AA5052 region, which is lower by 100K than that of the AA1050 region. Variation of the misorientation angle distribution and texture development with increase of annealing temperature also differ depending on the type of material. Differences of microstructural evolution between aluminum alloys with increase of annealing temperature can be mainly explained in terms of amounts of impurities and initial grain size.

직물형 유리섬유/에폭시 프리프레그로 피막된 판유리의 강구 충격 파괴 거동 (Steel-Ball-Impact fracture Behavior of Soda-Lime Glass Plates Bonded with Glass Fabric/Epoxy Prepreg)

  • 김형구;최낙삼
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.20-25
    • /
    • 2000
  • In order to study the impact fracture behavior of brittle materials, a steel-ball-impact experiment was Performed. Five kinds of materials were used in this study : soda-lime glass plates, glass/epoxy prepreg-one layer-bonded and unbonded glass plates, glass/epoxy prepreg-three layers-bonded and unbonded glass plates. Fracture patterns, the maximum stress and absorbed fracture energy were observed according to various impact velocities 40-120m/s. With increasing impact velocity, ring crack, cone crack, radial crack and lateral crack took place in the interior of glass plates. The generation of such cracks was largely reduced with glass/epoxy prepreg coating. Consequently, it is thought that the characteristics of the dynamic Impact fracture behavior could be evaluated using the absorbed fracture energy and the maximum stress measured at the back surface of glass plates.

  • PDF

Anti-Plane Shear Behavior of an Arbitrarily Oriented Crack in Bonded Materials with a Nonhomogeneous Interfacial Zone

  • Chung, Yong-Moon;Kim, Chul;Park, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.269-279
    • /
    • 2003
  • The anti-plane shear problem of bonded elastic materials containing a crack at an arbitrary angle to the graded interfacial zone is investigated in this paper The interfacial zone is modeled as a nonhomogeneous interlayer of finite thickness with the continuously varying shear modulus between the two dissimilar, homogeneous half-planes. Formulation of the crack problem is based upon the use of the Fourier integral transform method and the coordinate transformations of basic field variables. The resulting Cauchy-type singular integral equation is solved numerically to provide the values of mode 111 stress intensity factors. A comprehensive parametric study is then presented of the influence of crack obliquity on the stress intensity factors for different crack size and locations and for different material combinations, in conjunction with the material nonhomogeneity within the graded interfacial zone.

분말야금법을 이용한 Bi-materials의 제조 (Preparation of Bi-materials by Powder Metallurgy Method)

  • 이인규;이광식;장시영
    • 한국분말재료학회지
    • /
    • 제11권6호
    • /
    • pp.462-466
    • /
    • 2004
  • The bi-materials composed of $Al-5wt{\%}Mg$ and its composite reinforced with SiC particles were prepared by ball-milling and subsequent sintering process. The size of powder in Al-Mg/SiCp mixture decreased with increasing ball-milling time, it was saturated above 30 h when the ball and powder was in the ratio of 30 to 1. Both $Al-5wt{\%}Mg$ powders mixture and $Al-5wt{\%}Mg/SiCp$ mixture were compacted under a pressure of 350MPa and were bonded by sintering at temperatures ranging from 873K to 1173K for 1-5h. At 873k, the sound bi-mate-rials could not be obtained. In contrast, the bi-materials with the macroscopically well-bonded interface were obtained at higher temperatures than 873K. The length of well-bonded interface became longer with increasing temperature and time, indicating the improved contact in the interface between unreinforced Al-Mg part and Al-Mg/SiCp composite part. The relative density in the bi-materials increased as the sintering temperature and time increased, and the bi-materials sintered at 1173K for 5h showed the highest density.

접착부재의 계면에 대한 초음파 탐상 특성 (Characteristics of Ultrasonic Test on Interfaces of Adhesively Bonded Components)

  • 정남용;박성일
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.182-189
    • /
    • 2004
  • The application of adhesively bonded components is increasing in various industries such as automobile, aircraft, IC packages, and soldering techniques. In spite of such wide application in adhesively bonded components, nondestructive test techniques applying to adhesively bonded components have not been clearly established yet. In this paper, characteristics of ultrasonic test on interfaces of adhesively bonded components have been investigated by calculating transmission coefficient theoretically and experimentally. From the experimental results, the optimum conditions to establish frequencies for adhesively bonded homogeneous and dissimilar components are 4∼6 MHz and 2∼4 MHz, respectively.