• Title/Summary/Keyword: Bonded Joint

Search Result 271, Processing Time 0.028 seconds

Strength of sandwich-to-laminate single-lap bonded joints in elevated temperature and wet condition (샌드위치와 적층판을 접착한 단일겹침 체결부의 고온습도 강도특성 연구)

  • Choi, Bae-Hyun;Kweon, Jin-Hwe;Choi, Jin-Ho;Shin, Sang-Jun;Song, Min-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1115-1122
    • /
    • 2010
  • The main objective of this study is to experimentally investigate the effect of adhesive thickness and environmental conditions on the failure and strength of sandwich-to-laminate bonded joints. Three different adhesive thicknesses (t=0.2, 2 and 4 mm) and two different environmental conditions were considered. Environmental conditions include the RTD(room temperature and dry condition) and ETW(elevated temperature and wet condition). Test results show as the adhesive thickness increases from 0.2 mm to 2 and 4 mm, the joint strength decreases 16 and 30%, respectively. Regarding the effect of environmental conditions, except for one case, the joint strength in the ETW conditions turned out to be 12% higher than those in the RTD conditions. In the joints with adhesive thickness of 0.2 mm, remarkable difference from RTD condition was not found.

Destructive testing of adhesively bonded joints under static tensile loading

  • Ochsner, A.;Gegner, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.22-36
    • /
    • 2004
  • Several in-situ testing methods of adhesively bonded joints under static short-time tensile loading are critically analyzed in terms of experimental procedure and data evaluation. Due to its rather homogeneous stress state across the glue line, the tensile-shear test with thick single-lap specimens, according to ISO 11003-2, has become the most important test process for the determination of realistic materials parameters. This basic method, which was improved in both, the experimental part by stepped adherends and easily attachable extensometers and the evaluation procedure by numeric substrate deformation correction and test simulation based on the finite element method (FEM), is therefore demonstrated by application to several kinds of adhesives and metallic adherends. Multi-axial load decreases the strength of a joint. This effect, which is illustrated by an experimental comparison, impedes the derivation of realistic mechanical characteristics from measured force-displacement curves. It is shown by numeric modeling that tensile-shear tests with thin plate substrates according to ISO 4587, which are widely used for quick industrial quality assurance, reveal an inhomogeneous stress state, especially because of relatively large adherend deformation. Complete experimental determination of the elastic properties of bonded joints requires independent measurement of at least two characteristics. As the thick-adherend tensile-shear test directly yields the shear modulus, the tensile butt-joint test according to ISO 6922 represents the most obvious complement of the test programme. Thus, validity of analytical correction formulae proposed in literature for the derivation of realistic materials characteristics is verified by numeric simulation. Moreover, the influence of the substrate deformation is examined and a FEM correction method introduced.

  • PDF

Fracture Mechanical Characterization of Bi-material Interface for the Prediction of Load Bearing Capacity of Composite-Steel Bonded Joints (복합재료-탄소강 접착제 결합 조인트의 하중지지 능력 예측을 위한 이종 재료 접합 계면의 파괴 역학적 분석)

  • Kim, Won-Seok;Shin, Kum-Chel;Lee, Jung-Ju
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.15-22
    • /
    • 2006
  • One of the primary factors limiting the application of composite-metal adhesively bonded joints in structural design is the lack of a good evaluation tool for the interfacial strength to predict the load bearing capacity of boned joints. In this paper composite-steel adhesion strength is evaluated in terms of stress intensity factor and fracture toughness of the interface corner. The load bearing capacity of double lap joints, fabricated by co-cured bonding of composite-steel adherends has been determined using fracture mechanical analysis. Bi-material interface comer stress singularity and its order are presented. Finally stress intensities and fracture toughness of the wedge shape bi-material interface corner are determined. Double lap joint failure locus and its mixed mode crack propagation criterion on $K_1-K_{11}$ plane have been developed by tension tests with different bond lengths.

An Experimental Study on the Strength of Composite-to-Aluminum Hybrid Single-Lap Joints (복합재-알루미늄 단일겹침 하이브리드 체결부 강도 특성 실험 연구)

  • Kim, Jung-Jin;Seong, Myeong-Su;Kim, Hong-Joo;Cha, Bong-Keun;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.841-850
    • /
    • 2008
  • Strength and failure of composite-to-aluminum rivetted, bonded, and rivet/bonding hybrid single-lap joints were investigated by experiment. A total of 82 joint specimens were tested with 3 different overlap lengths and 2 types of stacking sequence. FM73m adhesive film and NAS9308-4-03 rivet were used for hybrid joints. While failure loads of the bonded and hybrid joints increased as the overlap length increased, failure loads of the rivetted joints were not affected by the overlap length. Effect of the stacking sequence was not remarkable in the simple bonded or rivetted joints. Failure loads of the hybrid joints, however, showed the maximum of 30% difference depending on the stacking sequence. Major failure mode of the bonded and hybrid joints was the delamination of the composite adherend and failure mode of riveted joints was the rivet failure with local bearing.

A Study on the Effect of Adhesion Condition on the Mode I Crack Growth Characteristics of Adhesively Bonded Composites Joints (복합재 접착 체결 구조의 접착 상태가 모드 I 균열 성장 특성에 미치는 영향에 대한 연구)

  • No, Hae-Ri;Jeon, Min-Hyeok;Cho, Huyn-Jun;Kim, In-Gul;Woo, Kyeong-Sik;Kim, Hwa-Su;Choi, Dong-Su
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.323-329
    • /
    • 2021
  • In this paper, the characteristics of fracture in mode I loading were analyzed for adhesively bonded joints with non-uniform adhesion. The Double Cantilever Beam test was performed and mode I fracture toughness was obtained. In the case of non-uniform adhesively bonded joints, the stable crack growth sections and unstable crack growth section were shown. The fracture characteristics of each section were observed through the load-displacement curve of the DCB test and the fracture surface of the specimen. Finite Element Analysis was performed at the section based on segmented section by crack length measured through the test and using the mode I fracture toughness of each section. Through DCB test results and finite element analysis results, it was confirmed that the fracture behavior of specimens with non-uniform adhesion can be simulated.

Longitudinal Bonding Strength Performance Evaluation of Larch Lumber (낙엽송 소경각재의 종접합 성능평가)

  • Lee, In-Hwan;Pack, Ju-hyun;Song, Da-bin;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.85-92
    • /
    • 2018
  • In order to use glued built up timber beam as a structural member for post and beam construction, it must be possible to manufacture long-span lumber. In this study, the researchers conducted a performance evaluation for longitudinal bonding of lumber (cross-section $89{\times}120mm$) made from larch. The specimens were prepared in six different forms using the longitudinal bonding method. The bonding strength of these specimens was tested through tensile strength tests and bending strength tests. The tensile strength test result of the longitudinally bonded parts was better than that of the double lap specimens. And, the tensile strength value of the scarf specimen was better than that of the hooked scarf specimen. The tensile strength of the GFRP (Glass Fiber Reinforced Plastic) rod insertion bonding specimen was 3.6 MPa, which was the highest. As for the bending strength test result of the longitudinally bonded part, the average MOR (modulus of rupture) of the specimen where a GFRP rod was inserted and bonded measured 29 MPa, while the specimens of other bonded parts showed a MOR no more than 11 MPa. Toughness destruction was observed in specimens where a GFRP rod was insertion-bonded. The rest of the specimens showed brittle destruction. The average MOR strength of the Rod + Lap specimen was 30.5 MPa, which was the highest among all longitudinally bonded specimens. The bending strength of the Rod + Lap specimens showed an effective strength that was 66% of that of the control group which were not longitudinally bonded.

Failure Mode and Failure Strength of Homogeneous Metals & Dissimilar Metals Bonded Single Lap-Shear Joints (동종금속 및 이종금속 단일 겹침 접착 시편의 파손모드 및 파손강도에 관한 연구)

  • Park, Beom Chul;Chun, Heoung-Jae;Park, Jong Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this paper, the experimental study and finite elements analysis were conducted on homogeneous and dissimilar metals single lap-shear bonded joints to investigate the factor that affect the joint failure load. It was found that factors which have the significant effects on the failure load of the joint was stiffness of the adherends. And from experimental results, it can be confirmed that the failure load increases linearly with overlap length increases. And the failure load of dissimilar metal joints is approximately 1KN(10~17%) larger than homogeneous metal joints. In order to confirm this phenomenon, the stress distribution and strain distribution of the specimens were analyzed through the finite element analysis. The difference between homogeneous metals joints and dissimilar metals joints is that stress and strain in adhesive are concentrated at the end of the overlap zone close to aluminium which has lower rigidity than aluminium in case of dissimilar metals joints. From high rigidity of steel, the stress concentration in bonds are decreased and it cause increase of the failure strength at dissimilar metal joints.

Effect of Fiber Orientation on Failure Strength Properties of Natural Fiber Reinforced Composites including Adhesive Bonded Joint (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 섬유 방향의 영향)

  • Yoon, Ho-Chel
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.43-48
    • /
    • 2006
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tests were carried out on specimen joints manufactured hybrid stacked composites such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the fracture strength using hybrid stacked composites with a polyester and bamboo natural fiber layer. Tensile and peel strength of hybrid stacked composites are tested before appling adhesive bonding. From results, Natural fiber reinforced composites have lower tensile strength than the original polyester. and The load directional orientation and small amount and low thickness of bamboo natural fiber layer have a good effect on the tensile and peel strength of natural fiber reinforced composites. The failure strength of these materials applied adhesive bonding is also affected by fiber orientation and thickness of bamboo natural fiber layer. There for, Fiber orientation of bamboo natural fiber layer have a great effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.

DETECTION OF INTERFACIAL CRACK LENGTH BY USING ULTRASONIC ATTENUATION COEFFICIENTS ON ADHESIVELY BONDED JOINTS

  • Chung, N.Y.;Park, S.I.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.303-309
    • /
    • 2004
  • In this paper, an interfacial crack length has been detected by using the ultrasonic attenuation coefficient on the adhesively bonded double-cantilever beam (DCB) joints. The correlations between energy release rates which were investigated by experimental measurement, the boundary element method (BEM) and Ripling's equation are compared with each other. The experimental results show that the interfacial crack length for the ultrasonic attenuation coefficient and energy release rate increases proportionally. From the experimental results, we propose a method to detect the interfacial crack length by using the ultrasonic attenuation coefficient and discuss it.

The Effects of Surface Roughness and Bond Thickness on the Fatigue Life of Adhesively Bonded Tubular Single Lap Joints (비틀림 접착 조인트의 피로 수명에 대한 표면 조도와 접착 두께의 영향)

  • Gwon, Jae-Uk;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2022-2031
    • /
    • 2000
  • Since the surface roughness of adherends affects much the strength of adhesivelybonded joints, the effect of surface roughness on the fatigue life of adhesively bonded tubular single lap joints was investigated analytically and experimentally by fatigue torsion test. The stiffness of the interfacial layer between adherends and adhesive was modeled as a normal statistical distribution function of surface roughness of adherends. From the investigation, it was found that the optimum surface roughness of adherends for the fatigue strength of tubular single lap joints was dependent on bondthickness and applied load.