• Title/Summary/Keyword: Bond-slip

Search Result 312, Processing Time 0.022 seconds

Analysis of composite frame structures with mixed elements - state of the art

  • Ayoub, Ashraf
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.157-181
    • /
    • 2012
  • The paper presents a review of the application of the newly proposed mixed finite element model for seismic simulation of different types of composite frame structures. To evaluate the performance of the element, a comparison with displacement-based and force-based models is conducted. The study revealed that the mixed model is superior to the others in terms of both speed of convergence and numerical stability, and is therefore considered the most practical approach for modeling of composite structures. In this model, the element is derived using independent force and displacement shape functions. The nonlinear response of the frame element is based on the section discretization into fibers with uniaxial material models. The interfacial behavior is modeled using an inelastic interface element. Numerical examples to clarify the advantages of the model are presented for the following structural applications: anchored reinforcing bar problems, composite steel-concrete girders with deformable shear connectors, beam on elastic foundation elements, R/C girders strengthened with FRP sheets, R/C beam-columns with bond-slip, and prestressed concrete girders. These studies confirmed that the model represents a major advancement over existing elements in simulating the inelastic behavior of composite structures.

Corrosion effects on tension stiffening behavior of reinforced concrete

  • Shayanfar, M.A.;Ghalehnovi, M.;Safiey, A.
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.403-424
    • /
    • 2007
  • The investigation of corrosion effects on the tensile behavior of reinforced concrete (RC) members is very important in region prone to high corrosion conditions. In this article, an experimental study concerning corrosion effects on tensile behavior of RC members is presented. For this purpose, a comprehensive experimental program including 58 cylindrical reinforced concrete specimens under various levels of corrosion is conducted. Some of the specimens (44) are located in large tub containing water and salt (5% salt solution); an electrical supplier has been utilized for the accelerated corrosion program. Afterwards, the tensile behavior of the specimens was studied by means of the direct tension tests. For each specimen, the tension stiffening curve is plotted, and their behavior at various load levels is investigated. Average crack spacing, loss of cross-section area due to corrosion, the concrete contribution to the tensile response for different strain levels, and maximum bond stress developed at each corrosion level are studied, and their appropriate relationships are proposed. The main parameters considered in this investigation are: degree of corrosion ($C_w$), reinforcement diameter (d), reinforcement ratio (${\rho}$), clear concrete cover (c), ratio of clear concrete cover to rebar diameter (c/d), and ratio of rebar diameter to reinforcement percentage ($d/{\rho}$).

Nonlinear Analysis using ABAQUS Software of Reinforced Concrete (RC) Beams Strengthened with Externally Post-tensioning Steel Rods (외적 포스트텐셔닝 강봉으로 보강된 철근콘크리트 보의 ABAQUS를 이용한 비선형해석)

  • Lee, Swoo-Heon;Shin, Kyung-Jae;Kim, Jin-Wook;Lee, Hee-Du
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.11-17
    • /
    • 2018
  • Concrete is the well-used material in many architectural and civil structures. The behavior of concrete does exhibit a different characteristic in compression and tension, and it also shows an inelastic-nonlinear behavior. In addition, the concrete properties vary slightly depending on the environmental factor and manufacturer. These properties of concrete make the modeling or simulation of concrete material difficult. In reinforced concrete, particularly, there is a difficulty in bond-slip relationship between concrete and steel. However, in this paper, reserving remainder of these limits the finite element analysis for reinforced concrete beams through ABAQUS simulation has been carried out with some assumptions. Assumptions include the perfect bond of steel and concrete as well as the concrete damaged plasticity (CDP) in concrete property. There is a reasonable agreement between the experimental and numerical results, although the analytical strength and external rod deformation are slightly overestimated. The average and standard deviation between two results are 1.05 and 0.05, respectively. And the models and the computations lead to the evolution of fracture in bending beam.

Debonding strain for steel-concrete composite slabs with trapezoidal metal deck

  • Claudio Bernuzzi;Marco A. Pisani;Marco Simoncelli
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.19-30
    • /
    • 2023
  • Steel-concrete composite slabs represent a very efficient floor solution combining the key performance of two different materials: the steel and the concrete. Composite slab response is governed by the degree of the interaction between these two materials, mainly depending by chemical and mechanical bond. The latter is characterized by a limited degree of confinement if compared with the one of the rebars in reinforced concrete members while the former is remarkably influenced by the type of concrete and the roughness of the profiled surface, frequently lubricated during the cold-forming manufacturing processes. Indeed, owing to the impossibility to guarantee a full interaction between the two materials, a key parameter governing slab design is represented by the horizontal shear-bond strength, which should be always experimentally estimated. According to EC4, the design of the slab bending resistance, is based on the simplified assumption that the decking sheet is totally yielded, i.e., always in plastic range, despite experimental and numerical researches demonstrate that a large part of the steel deck resists in elastic range when longitudinal shear collapse is achieved. In the paper, the limit strain for composite slab, which corresponds to the slip, i.e., the debonding between the two materials, has been appraised by means of a refined numerical method used for the simulation of experimental results obtained on 8 different composite slab types. In total, 71 specimens have been considered, differing for the properties of the materials, cross-section of the trapezoidal profiled metal sheets and specimen lengths.

Evaluation of Bond Strength for FRP Hybrid Bar According to Coating Methods using Silica Sands (규사 코팅 방법에 따른 FRP Hybrid Bar의 부착강도 평가)

  • Jung, Kyu-San;Park, Ki-Tae;You, Young-Jun;Seo, Dong-Woo;Kim, Byeong-Cheol;Park, Joon-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.118-125
    • /
    • 2017
  • In this study, we examined the bond performance of FRP Hybrid Bars. FRP Hybrid Bars are developed by wrapping glass fibers on the outside of deformed steel rebars to solve the corrosion problem. The surface of the FRP Hybrid Bars was coated with resin and silica sand to enhance its adhesion bonding performance with concrete. Various parameters, such as the resin type, viscosity, and size of the silica sand, were selected in order to find the optimal surface condition of the FRP Hybrid Bars. For the bonding test, FRP Hybrid Bars were embedded in a concrete block with a size of 200 mm3 and the maximum load and slip were measured at the interface between the FRP Hybrid Bar and concrete through the pull-out test. From the experimental results, the maximum load and bond strength were calculated as a function of each experimental variable and the resin type, viscosity and size of the silica sand giving rise to the optimal bond performance were evaluated. The maximum bond strength of the specimen using epoxy resin and No. 5 silica sand was about 35% higher than that of the deformed rebar.

Bond Strength Properties of CFRP Rebar in Concrete According to the Concrete Strength (콘크리트 강도에 따른 CFRP 보강근의 부착강도 특성)

  • Kim, Ho-Jin;Kim, Ju-Sung;Kim, Young-Jin;Choi, Jung-Wook;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.569-577
    • /
    • 2021
  • CFRP(Carbon Fiber Reinforced Plastic) can maintain the same strength even if the diameter is reduced by about one - third, and the weight is about one - twentieth of that of the deformed reinforcing bars that have been used in the construction industry. In particular, it is resistant to corrosion, which is the weakest part of reinf orcing bars, and there is no concern that it will deteriorate over time, It is light and durable, so transportation costs are low and it is convenient for high-rise buildings. This paper experimentally clarifies the adhesive properties of CFRP and clarifies its behavior. That is, bond strength test was conducted with the directness of CFRP and the strength of concrete as experimental variables, and the bond mechanism was clarified experimentally. Furthermore, based on the experimental results, we constructed the bond stress-slip-strain relationship of CFRP compared to the existing deformed reinforcing bars.

Mechanical Properties of Hwangtoh-Based Alkali-Activated Concrete

  • Yang, Keun-Hyeok;Hwang, Hey-Zoo;Lee, Seol
    • Architectural research
    • /
    • v.11 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • This study presents the testing of 15 hwangtoh-based cementless concrete mixes to explore the significance and limitations of the development of eco-friendly concrete without carbon dioxide emissions while maintaining various beneficial effects. Hwangtoh, which is a kind of kaolin, was incorporated with inorganic materials, such as calcium hydroxide, to produce a cement-less binder. The main variables investigated were the water-to-binder ratio and fine aggregate-to-total aggregate ratio to ascertain the reliable mixing design of hwangtoh-based cementless concrete. The variation of slump with elapsed time was recorded in fresh concrete specimens. Mechanical properties of hardened concrete were also measured: including compressive strength gain, splitting tensile strength, moduli of rupture and elasticity, stress-strain relationship, and bond resistance. In addition, mechanical properties of hwangtoh-based cement-less concrete were compared with those of ordinary portland cement (OPC) concrete and predictions obtained from the design equations specified in ACI 318-05 and CEB-FIP for OPC concrete, wherever possible. Test results show that the mechanical properties of hwangtoh-based concrete were significantly influenced by the water-to-binder ratio and to less extend by fine aggregate-to-total aggregate ratio. The moduli of rupture and elasticity of hwangtoh-based concrete were generally lower than those of OPC concrete. In addition, the stress-strain and bond stress-slip relationships measured from hwangtoh-based concrete showed little agreement with the design model specified in CEB-FIP. However, the measured moduli of rupture and elasticity, and bond strength were higher than those given in ACI 318-05 and CEB-FIP. Overall, the test results suggest that the hwangtoh-based concrete shows highly effective performance and great potential as an environmental-friendly building material.

Finite element computational modeling of externally bonded CFRP composites flexural behavior in RC beams

  • Gamino, Andre Luis;Bittencourt, Tulio Nogueira;de Oliveira e Sousa, Jose Luiz Antunes
    • Computers and Concrete
    • /
    • v.6 no.3
    • /
    • pp.187-202
    • /
    • 2009
  • This paper focuses on the flexural behavior of RC beams externally strengthened with Carbon Fiber Reinforced Polymers (CFRP) fabric. A non-linear finite element (FE) analysis strategy is proposed to support the beam flexural behavior experimental analysis. A development system (QUEBRA2D/FEMOOP programs) has been used to accomplish the numerical simulation. Appropriate constitutive models for concrete, rebars, CFRP and bond-slip interfaces have been implemented and adjusted to represent the composite system behavior. Interface and truss finite elements have been implemented (discrete and embedded approaches) for the numerical representation of rebars, interfaces and composites.

A Study on the Flexural Behavior of RC Beams Strengthened with High-Performance Carbon Fiber Bars (고성능 탄소섬유봉으로 보강된 철근콘크리트 보의 휨거동에 관한 연구)

  • 하기주;신종학;박연동;전찬목;이영범;김기태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.451-456
    • /
    • 2002
  • An experimental study was carried out to investigate the flexural behavior of RC beams strengthened with high-performance carbon fiber bars. Specimens designed with the conventional retrofitting method were also tested to compare load-carrying capacity and ductility. As the results, specimens strengthened with high-performance carbon fiber bars showed much higher load-carrying capacity and ductility compared to specimens strengthened with a steel plate and carbon fiber sheets. The failure mechanism of the specimen strengthened with a high-performance carbon fiber bar was bond-slip, whereas that of the others were interface debonding or rip-off.

  • PDF

Advanced numerical model for the fire behaviour of composite columns with hollow steel section

  • Renaud, C.;Aribert, J.M.;Zhao, B.
    • Steel and Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.75-95
    • /
    • 2003
  • A numerical model is presented to simulate the mechanical behaviour of composite steel and concrete columns taking into account the interaction between the hollow steel section and the concrete core. The model, based on displacement finite element methods with an Updated Lagrangian formulation, allows for geometrical and material non linearities combined with heating over all or a part of the section and column length. Comparisons of numerical calculations made using the model with 33 fire resistance tests show that the model is able to predict the fire resistance, expressed in minutes of fire exposure, of composite columns with a good accuracy.