• Title/Summary/Keyword: Bond order

Search Result 789, Processing Time 0.027 seconds

Bond Capacity of Near-Surface-Mounted FRP in Concrete Corresponding to Fire-Protection Method (콘크리트에 표면매립보강된 FRP의 내화단열방법에 따른 부착성능)

  • Lim, Jong-wook;Kim, Tae-hwan;Seo, Soo-yeon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.1
    • /
    • pp.3-10
    • /
    • 2019
  • The purpose of this paper is to find the fire-protection method for keeping on the bond capacity of Near-Surface-Mounted (NSM) FRP under high temperature. Experiments have been carried out to evaluate the bond capacity of NSM FRP by using CFRP-plates and to confirm the heat transfer to the concrete block when the refractory insulation is attached to the surface of NSM FRP. Bond test of NSM FRP under room temperature was conducted to obtain the maximum bond strength. And then a heating tests were carried out with keeping the bond stress of 30% of the maximum bond strength. As a result, the bond capacity of NSM FRP was disappeared when the temperature at epoxy reached to its glass transition temperature (GTT). In order to secure the bond capacity of the NSM FRP, it is necessary to protect the front as well as side by using insulation materials.

Concrete-steel bond-slip behavior of recycled concrete: Experimental investigation

  • Ren, Rui;Qi, Liangjie;Xue, Jianyang;Zhang, Xin;Ma, Hui;Liu, Xiguang;Ozbakkaloglu, Togay
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.241-255
    • /
    • 2021
  • In order to study the interfacial bond-slip behavior of steel reinforced recycled concrete (SRRC) under cyclic loading, thirteen specimens were designed and tested under cyclic loading and one under monotonic loading. The test results indicated that the average bond strength of SRRC decreased with the increasing replacement ratio of recycled concrete, whereas the bond strength increased with an increase in the concrete cover thickness, the volumetric stirrup ratio, and the strength of recycled concrete. The ultimate bond strength of the cyclically-loaded specimen was significantly (41%) lower than that of the companion monotonically-loaded specimen. The cyclic phenomena also showed that SRRC specimens went through the nonslip phase, initial slip phase, failure phase, bond strength degradation phase and residual phase, with all specimens exhibiting basically the same shape of the bond-slip curve. Additionally, the paper presents the equations that were developed to calculate the characteristic bond strength of SRRC, which were verified based on experimental results.

An Analytical Study on the Pullout Properties of Axial Bars Embedded in Massive Concrete (매시브 콘크리트에 배근된 축방향 주철근의 인발특성에 관한 해석적 연구)

  • 장일영;송재호;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.194-200
    • /
    • 1993
  • The objective of this study is to clarify analytically the pullout behavior of axial bars from a footing. The bond stress-slip model obtained from the results by the finite element method as well as the pullout tests in massive concrete was used in order to evaluate the slip of bars from the footing. Also, the process of bond mechanism was taken into consideration on order to express the deterioration of bond stress along bars, The shape and magnitude of bond stress distribution depends upon each loading steps. Using equilibrium equation of axial force, $\tau$-S relationship and $\sigma$s-$\varepsilon$s relationship, the differential equations of each loading steps are derived. Applying both boundary and equilibrium conditions to the equations, the amount of slip could be determined. Calculated values on the basis of proposed method evaluation of the slip of bars have a good agreement with the experimental results.

  • PDF

An Analytical Model Proposal Considering Different Surface Type of Bond Behavior between GFRP Rebar and Concrete (GFRP 보강근의 외피형상을 고려한 부착 해석모델 제안)

  • Park, Ji-Sun;Song, Tae-Hyeob;Lee, Jung-Yoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 2019
  • The bond analysis model equation was proposed through the regression analysis of the experimental values of bond behavior for each rebar. In order to verify the appropriateness of the bond analysis model equation, the bond behaviors calculated by the proposed bond analysis model, BPE model and CMR model were compared with experimental values. The proposed bond model showed the closest behavior to the experimental values when compared to other analysis models. The former models can not consider the different properties of GFRP rebar according to composed materials, mixing and manufacturing method and the latter has limitation to express the relationships between bond behavior because of derived formula by numerical analysis. This study proposed the analytical model different considering bond mechanism according to surface type. In order to verity the appropriateness of the bond analytical model, the bond behaviors calculated by the proposed bond analytical model, BPE model and CMR model were compared with experimental values. The proposed bond model showed the closest behavior to the experimental values when compared to other analysis models.

AN EVALUATION OF THE CRACK PROPAGATION CHARACTERISTICS OF PORCELAIN AND THE BOND STRESS OF CERAMO-METAL SYSTEM (치과용 도재의 균열전파 특성과 도재 -금속간의 응력분석)

  • Park, Ju-Mi;Bae, Tae-Sung;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.1
    • /
    • pp.47-76
    • /
    • 1994
  • This study was carried out to evaluate the effect of the crack propagation characteristics and bond stress of ceramo-metal system. In order to characterize the crack propagation, the static crack propagation stored in $37^{\circ}C$ distilled water of two commerical porcelains and the dynamic crack propagation under cyclic flexure load of ceramo-metal system were examined. In order to characterize the bond stress, the shear bond test, the 3-point flexure bond test, and the finite element stress analysis of ceramo-metal system were conducted. The results obtained were as follows : 1. Bulk densities and Young's moduli of opaque porcelains increased with repeated firing. 2. Maximum fracture toughness during 4 firing cycles showed at the group of 4 firing cycles in Ceramco porcelain and 2 firing cycles in Vita porcelain. 3. Shear bond strength and flexure bond strength of Ceramco-Verabond specimen were larger than those of Ceramco-Degudent G specimen (p<0.05). 4. Interfacial stresses under three point flexure bond test were concentrated at the edges of ceramometal system. 5. When a cyclic flexure load was applied, the crack growth rate of porcelain surface of ceramometal specimens was decreased as load cycles increased.

  • PDF

Improvement of Adhesion Strength of High Temperature Plasma Coated Aluminum Substrate with Aluminum-Alumina Powder Mixture (알루미늄 기지에 알루미늄-알루미나 혼합분말을 이용한 고온플라즈마 열분사 코팅층의 밀착강도 향상기구)

  • Park, Jin Soo;Lee, Hyo Ryong;Lee, Beom Ho;Park, Joon Sik
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.226-232
    • /
    • 2015
  • High temperature plasma coating technology has been applied to recover damaged aluminum dies from wear by spraying pure aluminum and alumina powder. However, the coated mixed powder layer composed of aluminum and alumina often undergoes a detachment from the substrate, making the coated substrate die unable to maintain its expected life span. In this study, in order to increase the bonding strength between the substrate and the coating layer, a pure aluminum layer was applied as an intermediate bond layer. In order to prepare the specimen with variable bond coating conditions, the bond coat layers with a various gun speed from 10 cm/sec to 30 cm/sec were prepared with coating cycle variations ranging from three to nine cycles. The specimen with a bond coat layer coated with a gun speed of 20 cm/sec and three coating cycles exhibited ~13MPa of adhesion strength, while the specimen without a bond coat layer showed ~6 MPa of adhesion strength. The adhesion strength with a variation of bond coat layer thickness is discussed in terms of coating parameters.

An Experimental Study on Concrete Bond Behavior According to Grid Spacing of CFRP Grid Reinforcement (격자형 CFRP 보강재의 격자간격에 따른 콘크리트 부착거동에 대한 실험적 연구)

  • Noh, Chi-Hoon;Jang, Nag-Seop;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.73-81
    • /
    • 2022
  • Recently, as the service life of structures increased, the load-carrying capacity of deteriorated reinforced concrete, where corrosion of reinforcing bars occurs due to various causes, is frequently decreased. In order to address this problem, many studies on the bond characteristic of FRP (Fiber Reinforced Polymer) bars with corrosion resistance, light weight and high tensile strength have been conducted, however there are not many studies on the bond characteristic of grid-typed CFRP embedded in concrete. Therefore, in order to evaluate the bond characteristics of grid-typed CFRP and its usability as a substitute for steel rebar, a pull-out test is performed using the longitudinal bond length and transverse grid length of the grid-typed CFRP as variables. Through the pull-out test, the bond load-slip curve of the grid-typed CFRP is derived, and the bond behavior is analyzed. The total bond load equation is proposed as the sum of the bond force of the longitudinal bond length and the shear force of the grid in the transverse direction. Also, expressing the area of the bond load-slip curve as total work, the change in dissipated energy with respect to the slip is analyzed to examine the effect of the tranverse grid on the bond force.

A STUDY ON THE SHEAR BOND STRENGTH AND SCANNING ELECTRON MICROSCOPIC INVESTIGATION OF DENTIN BONDING AGENTS (상아질 접착제의 전단결합강도 및 주사전자현미경적 연구)

  • Lee, Gi-Hwan;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.289-302
    • /
    • 1995
  • The purpose of this study was to estimate the shear bond strength and observe the fractured and interfacial surfaces of various dentin bonding agents used conjunction with a visible light cured composite. The senentytwo human premolars and molars extracted due to periodontal or orthodontic reasons were used and randomely divided into six groups. All the prepared dentin surfaces were treated with Superbond D-liner, Scotchbond Multi-Purpose, All-Bond 2 and Prisma Universal Bond 3 accroding to the manufacturer's instructions. Six specimens were then demineralized in 10 % HCl for 24 hours and the other six specimens were not demineralized in order to observe the interfacial surfaces with Hitachi X-450 SEM at 25Kv. Also shear bond strength were obtained using an Instron Testing Machine with a crosshead speed of 1mm/min. The following results were obtained : 1. Although shear bond strength of Superbond D-Liner(17.35 MPa) and Scotch-bond Multi-Purpose group(17.29 MPa) were higher than the All-Bond 2(12.80 MPa) and Prisma Universial Bond 3 (13.43 MPa), there were no significant statistic differences in the shear bond strength between 4 groups.(P<0.05) As a result of etching to dentin in Prism a Universial BOND 3 experimentally, the resin tag was formed, but shear bond strength was decreased. 2. The resin tag into the opened dentinal tubule was formed in Superbond D-Liner, Scotchbond Multi-Purpose, All-Bond 2(etching) and Prisma Universial Bond 3(etching), but not in the All-Bone 2 and Prism a Universial Bond 3(non-etching). 3. Strong, durable bonds between dentin and dentinal bonding agents are essential, not only resin tag into the dentinal tubules, but also hybrid layer.

  • PDF

Pull-Out Bond Properties of Polymer Cement Coated Rebars in HSC (고강도콘크리트에서 폴리머 시멘트 슬러리 도장철근의 인발부착특성)

  • 김민호;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.215-220
    • /
    • 2002
  • Epoxy-coated re-bar was partly used to the structures and put to practical use, but were not economical and appeared to have defects such as the diminishing of long term bond strength between concrete. The study of polymer cement slurry coated re-bar was started in order to complement the defect of epoxy coated re-bar, and ever since the basic properties appeared to be excellent. But, study of bond properties embedded in concrete specimens was insufficient until now. This study attempts to examine the possibility of improving the bond strength of polymer cement slurry coated re-bar between concrete specimens in accordance with ACI Code and KS Code through pull-out test of 150mm$\times$150mm$\times$150mm substrates with polymer cement slurry coated re-bar having polymer cement ratios of 50%, 75% and 100%, coating thickness 250${\mu}{\textrm}{m}$, 450 ${\mu}{\textrm}{m}$ and with curing ages of 3, 7 and 28 days. High strength concrete was designed having a compressive strength of 500kgf/cm2 as specified. Practical bond length ranges of 55 and 85mm were applied to each of specimen. The bond strength of polymer cement slurry coated re-bar using St/BA-1 and St/BA-2 was compared to that of plain re-bar. The results of this study showed that the bond strength of 55mm bond length was much higher than that of 85mm bond length.

  • PDF

Factors Influencing S-O Bond and C-O Bond Cleavages in the Reactions of 2,4-Dinitrophenyl X-Substituted Benzenesulfonates with Various Nucleophilic Reagents

  • 엄익환;김정주;김명진;권동숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.353-357
    • /
    • 1996
  • Second-order rate constants have been measured spectrophotometrically for the reaction of 2,4-dinitrophenyl X-substituted benzenesulfonates with Z-substituted phenoxides in absolute ethanol at 25.0±0.1 ℃. The nucleophilic substitution reaction gives both S-O bond and C-O bond cleavage products. The extent of S-O bond cleavage increases significantly with increasing electron withdrawing ability of the sulfonyl substitutent X, while that of the C-O bond cleavage is independent on the electronic effect of the substituent. On the contratry, the effect of the substituent Z in the nucleophilic phenoxide is more significant for the C-O bond cleavage than for the S-O bond cleavage. Aminolyses of 2,4-dinitrophenyl benzenesulfonate (1) with various 1°, 2° and 3°amines have revealed that steric effect is little important. The extent of S-O bond cleavage increases with increasing the basicity of the amines, but decreases with increasing the basicity of the nucleophilic aryloxides, indicating that the HSAB principle is not always operative. Besides, reactant and solvent polarizability effect has also been found to be an important factor in some cases but not always to influence the reaction site.