• Title/Summary/Keyword: Bond Performance

Search Result 693, Processing Time 0.025 seconds

Tensile Properties and Adhesion of Hybrid-Type Anti-Corrosion Polymer Cement Slurry (하이브리드형 방식 폴리머 시멘트 슬러리의 인장특성 및 접착성)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.635-642
    • /
    • 2008
  • In recent years, epoxy-coated reinforcing bars have been widely used in order to prevent the corrosion of ordinary reinforcing bar. However, they have a bad balance between performance and cost. Especially, they have a brittleness properties, low bond strength to cement concrete and no good bend-ability in the field. The purpose of this study is to evaluate the tensile properties and adhesion of hybrid-type anti-corrosion polymer cement slurry (PCS). PCSs are prepared with four types polymer dispersions using fly ash and silica fume, and tested for proper coating thickness, tensile properties, adhesion to steel plate and bend-ability. From the test results, the viscosity of PCS is effected by polymer dispersion types, and is a little decreased by using fly ash. The coating thickness of PCS has a proper thickness at polymer-binder ratio of 100%. It is apparent that the coating thickness has various values according to viscosity of PCS, water-binder ratio and polymer-binder rato. PCS has a good various anticorrosion properties and physical properties such as tensile strength, adhesion and bend-ability. It is also recommended that proper coating thickness to reinforcing bar is in the ranges of 150 to $250{\mu}m$ for bond strength, adhesion and bend-ability. It is also expected that the coated reinforcing bar using PCS is widely used instead of epoxy coated reinforcing bar in the industrial field.

An experimental study on bonding and bearing capacities of thin spray-on liner to evaluate its applicability as a tunnel support member (터널 지보재로서의 적용성 검토를 위한 박층 뿜칠 라이너의 부착성능과 지보성능의 평가)

  • Han, Jin-Tae;Lee, Gyu-Phil;Park, Young-Taek;Choi, Soon-Wook;Hwang, Gwi-Sung;Choi, Myung-Sik;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.571-583
    • /
    • 2013
  • The use of Thin Spray-on Liner (TSL) as an alternative to shotcrete has drastically increased since 1990s when it was first developed and introduced to mines. In this study, tensile strength test, bond strength test, compression test with specimens coated by TSL, and two kinds of bending tests proposed by EFNARC (2008) were performed with two kinds of TSLs with different material compositions in order to evaluate their support capacities. As a result, both TSLs were shown to be satisfactory for the minimum performance requirements for a structural rock support suggested by EFNARC (2008) and tensile strength of a TSL was shown to increase as its content of polymer was higher. In contrast, its bond strength was shown to increase proportional to the content of a cementitious component especially at the early age.

Effect of the Kind and Content of Raw Materials on Mechanical Performances of Hybrid Composite Boards Composed of Green Tea, Charcoals and Wood Fiber (녹차-숯-목재섬유 복합보드의 역학적 성능에 미치는 구성원료의 종류 및 배합비율의 영향)

  • Park, Han-Min;Heo, Hwang-Sun;Sung, Eun-Jong;Nam, Kyeong-Hwan;Lim, Jae-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.64-76
    • /
    • 2013
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea, three kinds of charcoals and wood fiber for developing interior materials to reinforce the strength performances and the functionalities in addition to performances of the green tea-wood fiber hybrid boards. The effects for the kind and the component ratio of raw materials on mechanical properties were investigated. Bending strength performances of hybrid composite boards were highest in the hybrid composite boards composed of green tea, fine charcoal and wood fiber on average. However, the difference caused by the kind of charcoals was not large. These values were was markedly improved than those of green tea - wood fiber hybrid composite boards reported in previous researches. And it was found that the bending strength performance decreased with increasing component ratios of green tea and charcoals. The difference between urea resins used as the binder showed the higher value in hybrid composite boards using $E_1$ grade urea resin than in those using $E_0$ grade urea resin, but the difference between hybrid composite boards manufactured by both resins decreased markedly than the green tea - wood fiber hybrid composite boards reported in previous research. The internal bond strength of hybrid composite boards was in the order of hybrid composite boards with fine charcoal, activated charcoal and black charcoal, and it was found that the hybrid composite boards with fine charcoal had a similar values to control boards composed of only wood fiber.

Experiments on the Composite Action of Steel Encased Composite Column (강재 매입형 합성기둥의 합성작용에 관한 실험)

  • Min Jin;Jung In-Keun;Shim Chang-Su;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.393-400
    • /
    • 2005
  • Steel encased composite columns have been used for buildings and piers of bridges. Since the column section for the pier is relatively larger than that of building columns, economical steel ratio needs to be investigated for the required performance. Composite action between concrete and embedded steel sections can be obtained by bond and friction. However, the behavior of the column depends on the load introduction mechanism. Compression can be applied to concrete section, steel section and composite section. In this paper, experiments on shear strength of the steel encased composite column were performed to study the effect of confinement by transverse reinforcements, mechanical interlock by holes, and shear connectors. Bond strength obtained from the tests showed considerably higher value than the design value. Confinement, mechanical interlock and stud connectors Increased the shear strength and these values can be used effectively to obtain composite action of Steel Reinforced Concrete(SRC) columns.

Crack Spacing in RC Tension Members Considering Cover Thickness and Concrete Compressive Strength (피복두께와 콘크리트 강도를 고려한 철근콘크리트 인장부재의 균열간격)

  • Kim, Woo;Lee, Ki-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.193-202
    • /
    • 2018
  • This paper proposed a crack spacing calculation formulation which is an important parameter for calculating the crack width, that is the main factor for verification of serviceability limit states and durability performance evaluation of reinforced concrete members. The basic equation of average crack spacing is derived by considering the bond characteristics which is the governing equation for the analysis of cracking behavior in reinforced concrete members. In order to consider the effect of the cover thickness and concrete compressive strength, the crack spacing measured in 124 direct tensile tests performed by several researchers was analyzed and each coefficient was proposed. And, correlation analysis was performed from 80 specimen data where the maximum and average crack spacing were simultaneously measured, and a correlation coefficient that can easily predict the maximum crack spacing from the average crack spacing was proposed. The results of the proposed average crack spacing equation and maximum crack spacing correlation were compared with those current design code specification. The comparisons of proposed equations and the Korean design codes show that the proposed formulation for the average crack spacing and the maximum crack spacing improves the accuracy and reliability of prediction compared to the corresponding provisions of the Korean Concrete Structural Design Code and Korean Highway Bridge Design Code (Limit States Design).

Studies on Chemical Strutures and Adhesion Performance of pMDI Adhesives Modified by Ozonized Soybean Oil with Different Mixing Ratios (오존산화 콩기름의 구조분석 및 이를 이용한 변성 pMDI 접착제의 중량비에 따른 접착력 변화)

  • You, Young Sam;Lee, Hyun Jong;Lee, Taek Jun;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.56-64
    • /
    • 2009
  • The purpose of this study was to investigate and develop an eco-friendly wood adhesive based on vegetable oil (especially soybean oil), the renewable and sustainable natural resources, using ozonification technology for the chemical structure modification. The soybean oil (SBO) was reacted with $O_3$ at the rate of 7.13 g/h for different times, 15 minutes, 30 minutes, 60 minutes, and 120 minutes. The investigation of the modified chemical structure of the ozonized SBOs were conducted using FT-IR, $^1H$-NMR, MALDI-TOF MS, and GC/MS. As ozonification time increased, the peak of the unsaturated double bonds was disappeared and aldehyde or carboxyl peak appeared because ozonification broke the oil into small molecules. The plywoods were made at $110^{\circ}C$ with 30 seconds/mm hot-press time using the different ozonized SBO/pMDI adhesives and were tested for the dry, wet, cyclic boil test according to the Korea Industrial Standard F3101 Ordinary plywood. The bond strengths gradually increased with increasing ozonification time. The weight ratio 1:1 (ozonized SBO/pMDI), all strengths in 15, 30 and 60 minuets, exceeded constantly the dry, wet, cyclic boiling standard requirement. The range of ozonification time and weight ratio can fulfil1 the requirment of the wet test standard were 30~60 minutes and more than 0.5 pMDI. From the comprehensive view on the results of above experiments, it could be confirmed through experiments that ozonized SBO/pMDI has characteristics of effective reactivity and wet stability showed as an excellent candidate of wood adhesive applications.

A Study on the Minimization of Problems of the Direct Payment for Subcontractor's Work in Public Construction Project (공공건설사업(公共建設事業) 하도급대가(下都給代價) 직접지급(直接支給)의 효과분석(效果分析)을 통한 문제점(問題點) 저감방향(低減方向)에 대한 연구(硏究))

  • Cho, Young-Jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.5
    • /
    • pp.101-108
    • /
    • 2007
  • To execute a construction project, many construction participants are engaged in the project. Especially many subcontactors role is very important, but their contract statute seems weaker rather than prime contractor. So to protect the subcontractor and to activate fair subcontract, Fair Transactions in Subcontracting Act was enacted. Direct payment to subcontractor clause of the act can protect subcontractor from the fear of insolvency of prime contractor, on the other hand can cause dispute about the interpretation of defect liability. Therefore the positive act and regulation were examined, and the effects of direct payment to subcontractor were analyzed. And the treatment direction of direct payment were suggested in this paper. Summary is as follows; (1) Statute of subcontractor for the ordering subject must be considered (2) Contract relationship must be reflected in the performance bond, subcontract bond, and subcontract construction conditions (3) To clarify the defect liability for the direct payment, retainage to guarantee the repair during contract period may be reflect on the subcontract construction conditions.

A Study on Watertightness Improvement of Hybrid Method Using Polyvinyl Acetate(PVAc) (폴리비닐아세테이트(PVAc)를 이용한 복합공법의 수밀성능 향상에 관한 연구)

  • Ryou, Jae Suk;Song, Il Hyun;Lee, Yong Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.18-24
    • /
    • 2012
  • In this study, hybrid method using polyvinyl acetate (PVAc) which has a strong adhesion and flexibility in which acrylic copolymer chemical-reaction reacts with cement, and is eco-friendly, is to improve the watertightness. The hybrid method is applied applied primarily waterproof stuff comprising silicate system and secondary mortar mixed with PVAc on the concrete surface. And then, in order to evaluate the performance, the properties of bond strength and amount of water absorption were measured. Based on the above experiments, mock-up specimens for field application were fabricated, and then the properties were evaluated as laboratory experiments. As the results, specimens cast from hybrid method using PVAc showed the best results on watertightness and bond strength. And also, with respect to experiment of mock-up specimens, the properties were in agreement with laboratory results. Especially, it could know that PVAc has strengthening effect from the results of the compressive strength. Due to outstanding results of carbonation depth and resistance to chloride ion penetration, it may be applied in weak areas such as underground and marine structures.

A Review on TOPCon Solar Cell Technology

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Chowdhury, Sanchari;Pham, Duy Phong;Kim, Youngkuk;Ju, Minkyu;Cho, Younghyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.9 no.3
    • /
    • pp.75-83
    • /
    • 2021
  • The tunnel oxide passivated contact (TOPCon) structure got more consideration for development of high performance solar cells by the introduction of a tunnel oxide layer between the substrate and poly-Si is best for attaining interface passivation. The quality of passivation of the tunnel oxide layer clearly depends on the bond of SiO in the tunnel oxide layer, which is affected by the subsequent annealing and the tunnel oxide layer was formed in the suboxide region (SiO, Si2O, Si2O3) at the interface with the substrate. In the suboxide region, an oxygen-rich bond is formed as a result of subsequent annealing that also improves the quality of passivation. To control the surface morphology, annealing profile, and acceleration rate, an oxide tunnel junction structure with a passivation characteristic of 700 mV or more (Voc) on a p-type wafer could achieved. The quality of passivation of samples subjected to RTP annealing at temperatures above 900℃ declined rapidly. To improve the quality of passivation of the tunnel oxide layer, the physical properties and thermal stability of the thin layer must be considered. TOPCon silicon solar cell has a boron diffused front emitter, a tunnel-SiOx/n+-poly-Si/SiNx:H structure at the rear side, and screen-printed electrodes on both sides. The saturation currents Jo of this structure on polished surface is 1.3 fA/cm2 and for textured silicon surfaces is 3.7 fA/cm2 before printing the silver contacts. After printing the Ag contacts, the Jo of this structure increases to 50.7 fA/cm2 on textured silicon surfaces, which is still manageably less for metal contacts. This structure was applied to TOPCon solar cells, resulting in a median efficiency of 23.91%, and a highest efficiency of 24.58%, independently. The conversion efficiency of interdigitated back-contact solar cells has reached up to 26% by enhancing the optoelectrical properties for both-sides-contacted of the cells.

A Study on the Yield Rate and Risk of Portfolio Combined with Real Estate Indirect Investment Products (부동산간접투자상품이 결합된 포트폴리오의 수익률과 위험에 관한 연구)

  • Choi, Suk-Hyun;Kim, Jong-Jin
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.1
    • /
    • pp.45-63
    • /
    • 2019
  • Until recently, most people have invested in a traditional portfolio consisting of stocks, bonds and real estates based on the three-division method of properties in Korea. However, this study analyzed the impact of the composition of a portfolio combining representative real estate indirect investment products such as Reits and real estate funds on the investment performance. For this purpose, the empirical analysis using the mean variance model, which is the most appropriate method for the portfolio composition, was used. For variables used in this study, mixed asset portfolios were classified into Portfolio A through Portfolio G depending on the composition of assets, and the price indices selected as Kospi, Krx bond, Reits Trus Y7, Hanwha-Lasal fund, and Office (Seoul). The results are as follows; first Portfolio D, which combined bonds, stocks, Reits and Real Estate funds, and Portfolio G, which added the office, the actual real estate, were shown to have the lowest risk. second, Portfolio B composed of bonds, stocks and Reits and Portfolio D with added real estate funds had the lowest risk while Portfolio F composed of bonds, stocks, offices and real estate funds, and Portfolio G with added Reits were the most profitable. As a result, it has been analyzed that it was more effective to compose a portfolio including Reits and real estate funds, which were real estate indirect investment products that eliminated the illiquidity limitation of real estates than real estates, the traditional three-division method of properties. Therefore, it is possible to minimize the risk of investors and reduce the cost of ownership of the real estate by solving the illiquidity problem that is the biggest disadvantage of the direct investment, In addition, it is considered that it is more necessary to reinvigorate the real estate indirect investment market where small amounts can be invested.