• 제목/요약/키워드: Bond Breaking

검색결과 81건 처리시간 0.029초

Kinetics and Mechanism of the Anilinolysis of Aryl Ethyl Isothiocyanophosphates in Acetonitrile

  • Barai, Hasi Rani;Adhikary, Keshab Kumar;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1829-1834
    • /
    • 2013
  • The nucleophilic substitution reactions of Y-aryl ethyl isothiocyanophosphates with substituted X-anilines and deuterated X-anilines were investigated kinetically in acetonitrile at $75.0^{\circ}C$. The free energy relationships with X in the nucleophiles exhibited biphasic concave downwards with a break point at X = H. A stepwise mechanism with rate-limiting bond formation for strongly basic anilines and with rate-limiting bond breaking for weakly basic anilines is proposed based on the negative and positive ${\rho}_{XY}$ values, respectively. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) changed gradually from primary normal with strongly basic anilines, via primary normal and secondary inverse with aniline, to secondary inverse with weakly basic anilines. The primary normal and secondary inverse DKIEs were rationalized by frontside attack involving hydrogen bonded, four-center-type TSf and backside attack involving in-line-type TSb, respectively.

Dual Substituent Effects on Pyridinolysis of Bis(aryl) Chlorothiophosphates in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1754-1758
    • /
    • 2014
  • The nucleophilic substitution reactions of bis(Y-aryl) chlorothiophosphates (1) with X-pyridines are investigated kinetically in acetonitrile at $35.0^{\circ}C$. The free energy relationships with both X and Y are biphasic concave upwards with a break point at X = 3-Ph and Y = H, respectively. The sign of cross-interaction constants (CICs; ${\rho}_{XY}$) is positive with all X and Y. Proposed mechanism is a stepwise process with a rate-limiting leaving group departure from the intermediate with all X and Y. The kinetic results of 1 are compared with those of Y-aryl phenyl chlorothiophosphates (2). In the case of Y = electron-withdrawing groups, the cross-interaction between Y and Y, due to additional substituent Y, is significant enough to change the sign of ${\rho}_{XY}$ from negative with 2 to positive with 1, indicative of the change of mechanism from a rate-limiting bond formation to bond breaking.

黃의 親核性 置換反應(제10보). 鹽化페닐메탄술포닐의 加溶媒分解反應 (Nucleophilic Displacement at Sulfur Center (X). Solvolysis of Phenylmethanesulfonyl Chloride)

  • 이익춘;김왕기
    • 대한화학회지
    • /
    • 제22권3호
    • /
    • pp.111-116
    • /
    • 1978
  • 메탄올-물, 에탄올-물, 아세톤-물 및 아세토니트릴-물의 二成分 混合溶媒에서 鹽化페닐메탄술포닐의 加溶媒分解反應을 速度論的으로硏究하였다. 反應速度는 反陽性子溶媒에서 보다 陽性子溶媒에서 더 빨랐으며, 이온化能力에 對한 反應速度의 感度 즉 Winstein 圖示의 m와 轉移狀態의 溶媒和數는 陽性子溶媒에서 훨씬 작았다. 이것은 陽性子溶媒의 水素結合溶媒和에 依한 初期狀態의 安定化로서 생각할 수 있다. 反應은 모든 溶媒系에 있어서 轉移狀態의 結合形成이 結合破壤을 앞지르는$S_N2$ 메카니즘으로 일어난다 할 수 있다.

  • PDF

Kinetics and Mechanism of the Aminolyses of Bis(2-oxo-3-oxazolidinyl) Phosphinic Chloride in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3218-3222
    • /
    • 2013
  • The aminolyses, anilinolysis and pyridinolysis, of bis(2-oxo-3-oxazolidinyl) phosphinic chloride (1) have been kinetically investigated in acetonitrile at 55.0 and $35.0^{\circ}C$, respectively. For the reactions of 1 with substituted anilines and deuterated anilines, a concerted SN2 mechanism is proposed based on the selectivity parameters and activation parameters. The deuterium kinetic isotope effects ($k_H/k_D$) invariably increase from secondary inverse to primary normal as the aniline becomes more basic, rationalized by the transition state variation from a backside to a frontside attack. For the pyridinolysis of 1, the authors propose a stepwise mechanism with a rate-limiting step change from bond breaking for more basic pyridines to bond formation for less basic pyridines based on the selectivity parameters and activation parameters. Biphasic concave upward free energy relationship with X is ascribed to a change in the attacking direction of the nucleophile from a frontside attack with more basic pyridines to a backside attack with less basic pyridines.

Molecular Bonding Force and Stiffness in Amine-Linked Single-Molecule Junctions Formed with Silver Electrodes

  • Kim, Taekyeong
    • 대한화학회지
    • /
    • 제59권2호
    • /
    • pp.132-135
    • /
    • 2015
  • Bonding force and stiffness in amine-linked single-molecule junctions for Ag electrodes were measured using a home-built conducting atomic force microscope under ambient conditions at room temperature. For comparison, Au electrodes were used to measure the rupture force and stiffness of the molecular junctions. The traces of the force along with the conductance showed a characteristic saw-tooth pattern owing to the breaking of the metal atomic contacts or the metal-molecule- metal junctions. We found the rupture force and stiffness for Ag are smaller than those for Au electrodes. Furthermore, we observed that the force required to break the amine-Ag bond in the conjugated molecule, 1,4-benzenediamine, is smaller than in 1,4-butanediamine which is fully saturated. These results consist with the previous theoretical calculations for the binding energies of the nitrogen bonded to Ag or Au atoms.

Analysis of the Solvolysis of Anthraquinone-2-Carbonyl Chloride in Various Mixed Solvents

  • Koh, Han Joong;Kang, Suk Jin
    • 대한화학회지
    • /
    • 제62권4호
    • /
    • pp.265-268
    • /
    • 2018
  • The solvolyses of anthraquinone-2-carbonyl chloride (1) were studied kinetically in 27 pure and various mixed solvents. The analysis using the extended Grunwald-Winstein equation in the solvolyses of anthraquinone-2-carbonyl chloride (1) obtained the l value of $2.11{\pm}0.11$, the m value of $0.54{\pm}0.06$, and the correlation coefficient of 0.955. The solvolysis reaction of 1 might proceed via an associative $S_N2$ mechanism enhancing bond making than bond breaking in the transition state (TS). This interpretation is further supported by a relatively large solvent kinetic isotope effect (SKIE, 2.27).

Structure-Reactivity Relationship of Substituted Phenylethyl Arenesulfonates with Substituted Pyridines under High Pressure

  • 박헌영;손기주;정덕영;여수동
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권9호
    • /
    • pp.1010-1013
    • /
    • 1997
  • Nucleophilic substitution reactions of (Z)-phenylethyl (X)-benzenesulfonates with (Y)-pyridines were investigated in acetonitrile at 60 ℃ under respective pressures. The magnitudes of the Hammett reaction constants, ρX, ρY and ρZ indicate that a stronger nucleophile leads to a greater degree of bond formation of C-N and a better leaving group is accompanied by a less degree of bond breaking. The magnitude of correlation interaction term, ρij can be used to determine the structure of the transition state (TS) for the SN reaction. As the pressure is increased, the Hammett reaction constants, ρX and |ρY|, are decreased, but correlation interaction coefficient, ρXZ and |ρYZ|, are increased. The results indicate that the reaction of (Z)-phenylethyl (X)-benzenesulfonates with (Y)-pyridines probably moves from a dissociative SN2 to early-type concerted SN2 mechanism by increasing pressure. This result shows that the correlation interaction term ρij can be useful tool to determine the structure of TS, and also the sign of the product ρXZ·ρYZ can be predict the movement of the TS.

A Functional Representation of the Potential Energy Surface of Non-Identical $S_N2$ Reaction: F- … $CH_3Cl \rightarrow FCH_3$ … Cl-

  • 김정섭;김영훈;노경태;이종명
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권10호
    • /
    • pp.1073-1079
    • /
    • 1998
  • The potential energy surface (PES) of the non-identical SN2 reactions, F- + CH3Cl → FCH3 + Cl and (H2O)F + CH3Cl → FCH3 + Cl-(H2O), were investigated with ab initio MO calculations. The ab initio minimum energy reaction path (MERP) of the F- + CH3Cl → FCH3 + Cl- was obtained and it was expressed with an intermediate variable t. The ab initio PES was obtained near around t. Analytical potential energy function (PEF) was determined as a function of the t in order to reproduce the ab initio PES. Based on Morse-type potential energy function, a Varying Repulsive Cores Model (VRCM) was proposed for the description of the bond forming and the bond breaking which occur simultaneously during the SN2 reaction. The MERP calculated with the PEF is well agreed with the ab initio MERP and PEF could reproduce the ab initio PES well. The potential parameters for the interactions between the gas phase molecules in the reactions and water were also obtained. ST2 type model was used for the water.

Mechanism for the Reaction of Substututed Phenacyl Arenesulfonates with Substituted Pyridines under High Pressures

  • 박헌영;손기주;정덕영;여수동
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권11호
    • /
    • pp.1179-1182
    • /
    • 1997
  • The rates for the reaction of (Z)-phenacyl (X)-benzenesulfonates with (Y)-pyridines in acetone were measured by an electrical conductivity method at 1-2000 bars and 45 ℃. The magnitudes of the Hammett reaction constants, ρX, ρY and ρZ, represent the degree of Nu-C bond formation and that of C-L bond breaking. The magnitude of correlation interaction term ρij can be used to determine the structure of the transition state (TS) for the SN reaction. As the pressure is increased, the Hammett reaction constants, ρX, |ρY| and ρZ are increased, but correlation interaction coefficient, |ρXZ| and ρYZ, are decreased. The results indicate that the reaction of (Z)-phenacyl (X)-benzenesulfonates with (Y)-pyridines probably moves from an associative SN2 to late-type SN2 mechanism by increasing pressure.

Solvolysis of (1S)-(+)-Menthyl Chloroformate in Various Mixed Solvents

  • Koh, Han Joong;Kang, Suk Jin
    • 대한화학회지
    • /
    • 제65권5호
    • /
    • pp.309-312
    • /
    • 2021
  • The solvolysis of (1s)-(+)-menthyl chloroformate (1) were studied kinetically in 28 pure and various mixed solvents. The analysis using the extended Grunwald-Winstein equation in the solvolysis of 1 obtained the l value of 2.46 ± 0.18, the m value of 0.91 ± 0.07, and the correlation coefficient of 0.950. The solvolysis of 1 might proceed via an associative SN2 mechanism enhancing bond making than bond breaking in the transition state (TS). The value of l/m is 2.7 within the ranges of value found in associative SN2 reaction. This interpretation is further supported by a relatively large solvent kinetic isotope effect (SKIE, 2.16).