• Title/Summary/Keyword: Bolus

Search Result 435, Processing Time 0.027 seconds

The Application of 3D Bolus with Neck in the Treatment of Hypopharynx Cancer in VMAT (Hypopharynx Cancer의 VMAT 치료 시 Neck 3D Bolus 적용에 대한 유용성 평가)

  • An, Ye Chan;Kim, Jin Man;Kim, Chan Yang;Kim, Jong Sik;Park, Yong Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.41-52
    • /
    • 2020
  • Purpose: To find out the dosimetric usefulness, setup reproducibility and efficiency of applying 3D Bolus by comparing two treatment plans in which Commercial Bolus and 3D Bolus produced by 3D Printing Technology were applied to the neck during VMAT treatment of Hypopahrynx Cancer to evaluate the clinical applicability. Materials and Methods: Based on the CT image of the RANDO phantom to which CB was applied, 3D Bolus were fabricated in the same form. 3D Bolus was printed with a polyurethane acrylate resin with a density of 1.2g/㎤ through the SLA technique using OMG SLA 660 Printer and MaterializeMagics software. Based on two CT images using CB and 3D Bolus, a treatment plan was established assuming VMAT treatment of Hypopharynx Cancer. CBCT images were obtained for each of the two established treatment plans 18 times, and the treatment efficiency was evaluated by measuring the setup time each time. Based on the obtained CBCT image, the adaptive plan was performed through Pinnacle, a computerized treatment planning system, to evaluate target, normal organ dose evaluation, and changes in bolus volume. Results: The setup time for each treatment plan was reduced by an average of 28 sec in the 3D Bolus treatment plan compared to the CB treatment plan. The Bolus Volume change during the pretreatment period was 86.1±2.70㎤ in 83.9㎤ of CB Initial Plan and 99.8±0.46㎤ in 92.2㎤ of 3D Bolus Initial Plan. The change in CTV Min Value was 167.4±19.38cGy in CB Initial Plan 191.6cGy and 149.5±18.27cGy in 3D Bolus Initial Plan 167.3cGy. The change in CTV Mean Value was 228.3±0.38cGy in CB Initial Plan 227.1cGy and 227.7±0.30cGy in 3D Bolus Initial Plan 225.9cGy. The change in PTV Min Value was 74.9±19.47cGy in CB Initial Plan 128.5cGy and 83.2±12.92cGy in 3D Bolus Initial Plan 139.9cGy. The change in PTV Mean Value was 226.2±0.83cGy in CB Initial Plan 225.4cGy and 225.8±0.33cGy in 3D Bolus Initial Plan 224.1cGy. The maximum value for the normal organ spinal cord was the same as 135.6cGy on average each time. Conclusion: From the experimental results of this paper, it was found that the application of 3D Bolus to the irregular body surface is more dosimetrically useful than the application of Commercial Bolus, and the setup reproducibility and efficiency are excellent. If further case studies along with research on the diversity of 3D printing materials are conducted in the future, the application of 3D Bolus in the field of radiation therapy is expected to proceed more actively.

A Study on IMRT (Intensity Modulated Radiation Therapy) Delivery Technique and FFF (Flattening Filter Free) Beam to Increase Skin Dose to Irregularly Shaped Skin Surface. (IMRT(Intensity Modulated Radiation Therapy)전달 기법과 FFF(Flattening Filter Free) 빔을 이용한 요철 부위 피부 선량 증가 방법에 대한 고찰)

  • Woo Heon;Son Sang Jun;Je Young Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.34
    • /
    • pp.7-12
    • /
    • 2022
  • Purpose: When it is difficult to secure the skin dose when treating Irregularly Shaped Skin Surface such as the nose where it is difficult to apply a bolus, increase the skin dose with a treatment plan that combines the IMRT (Intensity Modulated Radiation Therapy) delivery technique and FFF (Flattening Filter Free), It was tried to find out whether or not through the phantom experiment. Materials & Methods: Based on the 6MV-FF (Flattening Filter) and VMAT (Volumetric-Modulated Arc Therapy) treatment plans, which are the most commonly used treatment plans for head and neck cancer, A comparison group was created by combining VMAT and IMRT, FF and FFF, and the presence or absence of 5 mm bolus application. A virtual target was created on the Rando Phantom's nose, and a virtual bolus of 5 mm was applied assuming full contact on the Rando Phantom's nose. Five measurement points were determined based on the phantom's nose, and the absorbed dose was measured by irradiating each treatment plan 3 times per treatment plan according to the treatment technique and whether or not the bolus was applied. Result: The difference in skin dose in FF vs FFF increased in the case of FFF in VMAT bolus off, and there was no difference in case of IMRT bolus off. In VMAT bolus 5 mm and IMRT bolus 5 mm, it was confirmed that the skin dose was rather decreased in FFF. The difference in skin dose between VMAT and IMRT increased only in the case of FFF bolus off, and there was no statistical difference in the rest. For the difference in skin dose between bolus off vs bolus 5 mm, it was confirmed that the skin dose increased at bolus 5 mm, except for the case of using IMRT FFF. The treatment plan combining IMRT and FFF did not find any statistically significant difference as a result of analyzing the measured values of the treatment plan skin dose applied with a 5 mm bolus using the commonly used VMAT and FF. Therefore, it is thought that by using IMRT_FFF, it is possible to deliver a skin dose similar to that of applying a 5 mm bolus to VMAT_FF, which can be useful for patients who need a high skin dose but have difficulty applying a bolus. Conclusion: For patients who find it difficult to apply bolus, an increase in skin dose can be expected with a treatment plan that properly combines IMRT and FFF compared to VMAT and FF.

A Study on Dose Sensitivity according to Rice Cultivar in Extremities Radiation Therapy with Rice Bolus (사지의 방사선치료에 사용되는 쌀 볼루스의 품종에 따른 방사선량분포의 민감도 연구)

  • Seo, Jeongmin
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.741-746
    • /
    • 2020
  • To investigate the radiation dose sensitivity in extremity radiatioin therapy depending on rice cultivar which have different size and shape of grains, plan results are compared that used rice bolus Korean and Thai rice. Phantoms that are each no bolus, Korean rice bolus, Thai rice bolus were used and prescribed 100 cGy to isocenter and checked the point dose of 12 points of interest of each phantoms. The meane dose are 103.57±1.98 cGy in Thai rice bolus using, 104.27±2.12 cGy in Korean rice bolus and 104.99±6.40 cGy in phantom without bolus. Dose distribution of Thai and Korean rice bolus differed significantly in Wilcoxon's Signed Rank test (p=.011). It has been confirmed that that the bolus using Thai rice, which has a small grain size, shows a more even dose distribution.

Evaluating the Usefulness of Rice Bolus Phantom in Tomotherapy: Phantom Study (토모테라피에서 쌀 볼루스 팬텀의 유용성 평가: 팬텀연구)

  • Kim, Dae-Gun;Jung, Jae-Hong
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.663-669
    • /
    • 2021
  • The purpose of this study was to evaluate the usefulness of the rice bolus for upper-lower extremity radiation therapy by Tomotherapy. The computed tomography images were obtained for air, water, and rice bolus. The average and standard deviation of the Hounsfield unit (HU) were measured for image evaluation. The conformity index (CI) and homogeneity index (HI) were calculated for dose distribution of the planning target volume (PTV) which was treated by direct mode with gantry angle (90 and 270 angle). The point dose of a total of ten axial planes was measured to confirm the different regions. The mean of HU was -999.72 ± 0.72 at the air. The water and rice bolus were -0.13 ± 1.65 and -170 ± 27.2, respectively. The CI (HI) of PTV was 0.96 (1.36) at the air. 0.95 (1.04) at the water bolus, and 0.95 (1.04) at the rice bolus. The maximum dose for air was 136 cGy which is about 32% higher than 103 cGy for water and 104 cGy for rice bolus. There was a statistical difference for point dose between air and water including rice bolus (p=0.04), however, no statistical difference between water and rice bolus (p=0.579).The rice bolus phantom for extremities radiation therapy could be not only the optimized dose distribution but also the convenience and equipment safety at Tomotherapy. However, additional research will be necessary to more accurately verify the clinical usefulness of rice bolus phantom due to not enough examination.

Establishment of Injection Protocol of Contrast Material in Pulmonary Angiography using Test Bolus Method and 16-Detector-Row Computed Tomography in Normal Beagle Dogs

  • Choi, Sooyoung;Kwon, Younghang;Park, Hyunyoung;Kwon, Kyunghun;Lee, Kija;Park, Inchul;Choi, Hojung;Lee, Youngwon
    • Journal of Veterinary Clinics
    • /
    • v.34 no.5
    • /
    • pp.330-334
    • /
    • 2017
  • The aim of this study was to establish an injection protocol of a test bolus and a main bolus of contrast material for computed tomographic pulmonary angiography (CTPA) for visualizing optimal pulmonary arteries in normal beagle dogs. CTPA using a test bolus method from either protocol A or B were performed in each of four normal beagle dogs. In protocol A, CTPA was conducted with a scan duration for around 8 s, setting the contrast enhancement peak of the pulmonary trunk in the middle of the scan duration. The arrival time to the contrast enhancement peak was predicted from a previous dynamic scan using a test bolus (150 mg iodine/kg) injected with the same injection duration using for a main bolus (450 mg iodine/kg). In protocol B, CTPA was started at the predicted appearance time of contrast material in the pulmonary trunk based on a previous dynamic scan using a test bolus injected with the same injection rate as a main bolus. CTPA using protocol A showed the optimal opacification of the pulmonary artery with pulmonary venous contamination. Proper CTPA images in the absence of venous contamination were obtained in protocol B. CTPA with a scan duration for 8 s should be started at the appearance time of contrast enhancement in the pulmonary trunk, which can be identified exactly when a test bolus is injected at the same injection rate used for the main bolus.

Neck Node Bolus Technique in the Treatment of Nasopharyngeal Carcinoma with Intensity-modulated Radiotherapy

  • Phua, Chee Ee;Ung, Ngie Min;Tan, Boon Seang;Tan, Ai Lian;Eng, Kae Yann;Ng, Bong Seng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6133-6137
    • /
    • 2012
  • Purpose: To study the effect of bolus versus no bolus in the coverage of the nodal tumour volume with intensity-modulated radiotherapy (IMRT) for the treatment of nasopharyngeal carcinoma (NPC). Methods and Materials: This retrospective study used data from 5 consecutive patients with NPC who were treated with bolus for large neck nodes using IMRT from November 2011-January 2012 in our institute. All these patients were treated radically with IMRT according to our institution's protocol. Re-planning with IMRT without bolus for these patients with exactly the same target volumes were done for comparison. Comparison of the plans was done by comparing the V70 of PTV70-N, V66.5 of PTV70-N, V65.1 of PTV70-N and the surface dose of the PTV70-N. Results: The mean size of the largest diameter of the enlarged lymph nodes for the 5 patients was 3.9 cm. The mean distance of the GTV-N to the skin surface was 0.6 cm. The mean V70 of PTV70-N for the 5 patients showed an absolute advantage of 10.8% (92.4% vs. 81.6%) for the plan with bolus while the V66.5 of PTV70-N had an advantage of 8.1% (97.0% vs. 88.9%). The mean V65.1 also had an advantage of 7.1% (97.6% vs. 90.5%). The mean surface dose for the PTV70-N was also much higher at 61.1 Gy for the plans with bolus compared to only 23.5 Gy for the plans without bolus. Conclusion: Neck node bolus technique should be strongly considered in the treatment of NPC with enlarged lymph nodes treated with IMRT. It yields a superior dosimetry compared t o non-bolus plans with acceptable skin toxicity.

Customized 3D Printed Bolus for Breast Reconstruction for Modified Radical Mastectomy (MRM)

  • Ha, Jin-Suk;Jung, Jae Hong;Kim, Min-Joo;Jeon, Mi Jin;Jang, Won Suk;Cho, Yoon Jin;Lee, Ik Jae;Kim, Jun Won;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.196-202
    • /
    • 2016
  • We aim to develop the breast bolus by using a 3D printer to minimize the air-gap, and compare it to commercial bolus used for patients undergoing reconstruction in breast cancer. The bolus-shaped region of interests (ROIs) were contoured at the surface of the intensity-modulated radiation therapy (IMRT) thorax phantom with 5 mm thickness, after which the digital imaging and communications in mdicine (DICOM)-RT structure file was acquired. The intensity-modulated radiation therapy (Tomo-IMRT) and direct mode (Tomo-Direct) using the Tomotherapy were established. The 13 point doses were measured by optically stimulated luminescence (OSLD) dosimetry. The measurement data was analyzed to quantitatively evaluate the applicability of 3D bolus. The percentage change of mean measured dose between the commercial bolus and 3D-bolus was 2.3% and 0.7% for the Tomo-direct and Tomo-IMRT, respectively. For air-gap, range of the commercial bolus was from 0.8 cm to 1.5 cm at the periphery of the right breast. In contrast, the 3D-bolus have occurred the air-gap (i.e., 0 cm). The 3D-bolus for radiation therapy reduces the air-gap on irregular body surface that believed to help in accurate and precise radiation therapy due to better property of adhesion.

Geometric Evaluation of Patient-Specific 3D Bolus from 3D Printed Mold and Casting Method for Radiation Therapy

  • An, Hyun Joon;Kim, Myeong Soo;Kim, Jiseong;Son, Jaeman;Choi, Chang Heon;Park, Jong Min;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.32-38
    • /
    • 2019
  • Purpose: The objective of this study is to evaluate the geometrical accuracy of a patient-specific bolus based on a three-dimensional (3D) printed mold and casting method. Materials and Methods: Three breast cancer patients undergoing treatment for a superficial region were scanned using computed tomography (CT) and a designed bolus structure through a treatment planning system (TPS). For the fabrication of patient-specific bolus, we cast harmless certified silicone into 3D printed molds. The produced bolus was also imaged using CT under the same conditions as the patient CT to acquire its geometrical shape. We compared the shapes of the produced bolus with the planned bolus structure from the TPS by measuring the average distance between two structures after a surface registration. Results and Conclusions: The result of the average difference in distance was within 1 mm and, as the worst case, the absolute difference did not exceed ${\pm}2mm$. The result of the geometric difference in the cross-section profile of each bolus was approximately 1 mm, which is a similar property of the average difference in distance. This discrepancy was negligible in affecting the dose reduction. The proposed fabrication of patient-specific bolus is useful for radiation therapy in the treatment of superficial regions, particularly those with an irregular shape.

Development and Evaluation of a Thimble-Like Head Bolus Shield for Hemi-Body Electron Beam Irradiation Technique

  • Shin, Wook-Geun;Lee, Sung Young;Jin, Hyeongmin;Kim, Jeongho;Kang, Seonghee;Kim, Jung-in;Jung, Seongmoon
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.152-157
    • /
    • 2022
  • Background: The hemi-body electron beam irradiation (HBIe-) technique has been proposed for the treatment of mycosis fungoides. It spares healthy skin using an electron shield. However, shielding electrons is complicated owing to electron scattering effects. In this study, we developed a thimble-like head bolus shield that surrounds the patient's entire head to prevent irradiation of the head during HBIe-. Materials and Methods: The feasibility of a thimble-like head bolus shield was evaluated using a simplified Geant4 Monte Carlo (MC) simulation. Subsequently, the head bolus was manufactured using a three-dimensional (3D) printed mold and Ecoflex 00-30 silicone. The fabricated head bolus was experimentally validated by measuring the dose to the Rando phantom using a metal-oxide-semiconductor field-effect transistor (MOSFET) detector with clinical configuration of HBIe-. Results and Discussion: The thimble-like head bolus reduced the electron fluence by 2% compared with that without a shield in the MC simulations. In addition, an improvement in fluence degradation outside the head shield was observed. In the experimental validation using the inhouse-developed bolus shield, this head bolus reduced the electron dose to approximately 2.5% of the prescribed dose. Conclusion: A thimble-like head bolus shield for the HBIe- technique was developed and validated in this study. This bolus effectively spares healthy skin without underdosage in the region of the target skin in HBIe-.

Chest-wall Surface Dose During Post-mastectomy Radiation Therapy, with and without Nonmagnetic Bolus: A Phantom Study

  • Choi, Cheon Woong;Hong, Joo Wan;Park, Cheol Soo;Ahn, Jae Ouk
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.293-297
    • /
    • 2016
  • For mastectomy patients, sufficient doses of radiation should be delivered to the surface of the chest wall to prevent recurrence. A bolus is used to increase the surface dose on the chest wall, whereby the surface dose is confirmed with the use of a virtual bolus during the computerized treatment-planning process. The purpose of this study is an examination of the difference between the dose of the computerized treatment plan and the dose that is measured on the bolus. Part of the left breast of an Anderson Rando phantom was removed, followed by the attainment of computed tomography (CT) images that were used as the basis for computerized treatment plans that were established with no bolus, a 3 mm-thick bolus, a 5 mm-thick bolus, and a 10 mm-thick bolus. For the computerized treatment plan, a prescribed dose regimen was dispensed daily and planning target volume (PTV) coverage was applied according to the RTOG 1304 guidelines. Using each of the established computerized treatment plans, chest-wall doses of 5 points were measured; this chest-wall dose was used as the standard for the analysis of this study, while the level of significance was set at P < 0.05. The measurement of the chest-wall dose with no bolus is 1.6 % to 10.3 % higher, and the differences of the minimum average and the maximum average of the five measurement points are -13.8 and -1.9, respectively (P < 0.05); however, when the bolus was used, the dosage was measured as 3.7 % to 9.2 % lower, and the differences of the minimum average and the maximum average are 7.4 and 9.0, -1.2 and 17.4, and 8.1 and 19.8 for 3 mm, 5 mm, and 10 mm, respectively (P < 0.05). As the thickness of the bolus is increased, the differences of the average surface dose are further increased. There are a variety of factors that affect the surface dose on the chest wall during post-mastectomy radiation therapy, for which verification is required; in particular, a consideration of the appropriate thickness and the number of uses when a bolus is used, and which has the greatest effect on the surface dose on the chest wall, is considered necessary.