• Title/Summary/Keyword: Boltzmann distribution

Search Result 112, Processing Time 0.026 seconds

Mean energy of electrons in $SF_6$-Ar Mixtures Gas ($SF_6$-Ar 혼합기체(混合氣體)의 전자(電子) 평균(平均)에너지)

  • Kim, Sang-Nam;Seong, Nak-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.75-78
    • /
    • 2003
  • Energy distribution function for electrons in $SF_6$-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range $30\sim300$[Td] by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6$-Ar mixtures were measured by time-of-flight(TOF) method. The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with theoretical for a rang of E/N values. The transport coefficients for electrons in (0.2[%])$SF_6$-Ar and (0.5[%]$SF_6$ - Ar mixtures were measured by time-of-flight method, and the electron energy distribution function and the parameters of the velocity and the diffusion were determined by the variation of the collision cross-sections with energy. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

HBr Formation from the Reaction between Gas-phase Bromine Atom and Vibrationally Excited Chemisorbed Hydrogen Atoms on a Si(001)-(2 X1) Surface

  • Ree, J.;Yoon, S.H.;Park, K.G.;Kim, Y.H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1217-1224
    • /
    • 2004
  • We have calculated the probability of HBr formation and energy disposal of the reaction exothermicity in HBr produced from the reaction of gas-phase bromine with highly covered chemisorbed hydrogen atoms on a Si (001)-(2 ${\times}$1) surface. The reaction probability is about 0.20 at gas temperature 1500 K and surface temperature 300 K. Raising the initial vibrational state of the adsorbate(H)-surface(Si) bond from the ground to v = 1, 2 and 3 states causes the vibrational, translational and rotational energies of the product HBr to increase equally. However, the vibrational and translational motions of product HBr share most of the reaction energy. Vibrational population of the HBr molecules produced from the ground state adsorbate-surface bond ($v_{HSi}$ =0) follows the Boltzmann distribution, but it deviates seriously from the Boltzmann distribution when the initial vibrational energy of the adsorbate-surface bond increases. When the vibration of the adsorbate-surface bond is in the ground state, the amount of energy dissipated into the surface is negative, while it becomes positive as vHSi increases. The energy distributions among the various modes weakly depends on surface temperature in the range of 0-600 K, regardless of the initial vibrational state of H(ad)-Si(s) bond.

A Simulation of Diffusion coefficients for electrons in $SF_6$-Ar Gas Mixtures (시뮬레이션에 의한 $SF_6$-Ar혼합기체의 확산계수)

  • Seong, Nak-Jin;Kim, Sang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.163-166
    • /
    • 2006
  • Energy distribution function for electrons in $SF_6$-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range 30${\sim}$300(Td) by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2(%) and 0.5(%) $SF_6$-Ar mixtures were measured by time-of-flight(TOF) method, The results show that the deduced longitudinal diffusion coefficients and transverse diffusion coefficients agree reasonably well with theoretical for a rang of E/N values The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

Investigation of Hg free Electrodeless inductively capacitive tubular discharge (무수은 무전극 유도-용량형 직관형 램프 방전에 관한 연구)

  • 이태일;박해일;백홍구
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.191-196
    • /
    • 2002
  • In this paper we introduce novel electrode structure for high efficiency discharge. We operate discharge tube under the 0.16 torr pure Xe and apply the sinusoidal wave power to the lamp with 60kHz. We measure the electric power dissipation, plasma parameters, and 828 nm IR intensity. From these data we determine the discharge efficiency, IR intensity/watt, EEDF(Electron energy distribution function). As a result we obtain that the novel electrode structure has better performance in efficiency than that of conventional external electrode system. Also we determine the EEDF for each type of electrode structure by Boltzmann stover, EELNDIF code. The result of Boltzmann equation solving show that the noble electrode system has many high energy electrons compared with the conventional system.

  • PDF

Ionization and Attachment Coefficients in Mixtures of $SF_6$ and He ($SF_6-He$ 혼합기체의 전리와 부착계수)

  • Kim, Sang-Nam
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.342-345
    • /
    • 2005
  • This paper describes the electron energy distribution function characteristics in $SF_6-He$ gas calculated for range of E/N values from $50{\sim}700[Td]$ by the Monte Carlo simulation(MCS) and Boltzmann equation(BE) method using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters are obtained by time of flight(TOF) method. The results gained that the values of the electron swarm parameters such as the electron drift velocity, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients agree with the experimental and theoretical for a range of E/N. The results of Boltzmann equation and Monte carlo simulation have been compared with experimental data by Pollock, Ohmori, cottrell and Walker.

  • PDF

The flow Analysis in a Microchannel using the Lattice Boltzmann Method (격자볼츠만방법(LBM)을 이용한 마이크로채널 내의 유동해석)

  • Cho K. J.;Jeong J. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.79-82
    • /
    • 2004
  • As an alternative numerical method, the lattice Boltzmann method (LBM) is used to simulate a 2-dimensional pressure driven microchannel flow which comes from frequently in MEMS problems. The flow is assumed to be isothermal ideal gas flow. The flow field is calculated with various Knudsen numbers, pressure ratios and aspect ratios of the microchannel. The LBM can show the fundamental characteristics in microchannel flow such as velocity slip and nonlinear pressure drop.

  • PDF

The improvement of genetic algorithm using Boltzmann selection (유전자 알고리즘에서 볼쯔만 선택방법의 개선)

  • 윤기석;김태형;김유신
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.429-432
    • /
    • 1999
  • In this paper, we propose a method to improve Genetic Algorithm using Boltzmann selection which Michael has suggested. But Michael uses temperature schedule(the initial temperature, the cooling rate), which can be applicable only to the limited range of problems. We propose a new method to find the critical temperature and the cooling rate as parameters of the temperature schedule. The critical temperature can be derived from the distribution of each individual's fitness. Through the application of the island model where each island has differing cooling rate, it is proved that it is unnecessary to find the optimal cooling rate. The simulation on the TSP's with various city sizes proves the proposed critical temperature correct.

  • PDF

Reconsideration of CN Radiation an d $C_2$ Dissociation Rate Coefficient ($C_2$의 해리 반응 계수와 CN 복사에 대한 재고찰)

  • Hyun, Seong-Yoon;Park, Chul;Chang, Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.92-95
    • /
    • 2008
  • We performed the theoretical calculation of CN Violet radiation using the code SPRADIAN07 to predict the Lee et al.'s experimental measurements and to reinvestigate $C_2$ dissociation rate. CN Violet radiations are calculated under the Boltzmann and non-Boltzmann distribution using two chemical reaction sets: Park-Losev-G\"{o}kcen-Tsang and Park-Losev-G\"{o}kcen-Tsang-Lee models. Our SPRADIAN07 calculations show improvement in prediction of absolute radiation intensity of CN Violet and its decay rate by Park-Losev-G\"{o}kcen-Tsang reaction set with $C_2$ dissociation rate coefficient of $k_f$ = 1.5${\times}$10$^{16}$ exp(-71,600/$T_x$) cm$^3$ mole$^{-1}$ s$^{-1}$.

  • PDF

Electron swarm parameter in $CH_4$ by MCS-BE simulation (시뮬레이션에 의한 $CH_4$ 전자군 파라미터)

  • Kim, Sang-Nam;Seong, Nak-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.89-92
    • /
    • 2005
  • Using quantitative simulations of weakly ionized plasma, we can analyze gas characteristic. In this paper, the electron transport characteristic in $CH_4$ has been analysed over the E/N range 0.1${\sim}$ 300(Td), at the 300($_{\circ}$ K) by the two term approximation Boltzmann equation method and Monte Carlo Simulation. The electron energy distribution function has been analysed in $CH_4$ at E/N=10, 100 for a case of the equilibrium region in the mean energy. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, $Lucas^{[18]}$ and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

  • PDF

The study of insulation-characteristic in a mixture gas includes $SF_6$ ($SF_6$를 포함하는 혼합가스의 절연특성에 관한 연구)

  • 박명진;김대연;전병훈;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.165-168
    • /
    • 1999
  • The electron transport coefficients in mixture gas includes SF/sub 6/ is analysed in range of E/N values from 60∼800(Td) by the Boltzmann method that using a set of electron collision crass sections determined by the researchers. Swarm parameters in the Boltzmann method simulation such as electron drift velocity, ionization and electron attachment coefficients is in nearly agreement with the respective experimental and theoretical for a range of E/N.

  • PDF