• Title/Summary/Keyword: Boiling experiment

Search Result 181, Processing Time 0.026 seconds

A Study on the spray characteristics according to injection conditions for LPG injector (분사조건에 따른 LPG 인젝터의 분무특성에 관한 연구)

  • Ryu, Jea-Duk;Yoon, Yong-Won;Lee, Ki-Hyung;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.6 no.3
    • /
    • pp.17-22
    • /
    • 2001
  • Recently LPG engine is developed to fulfill such new requirements as improved fuel efficiency in additional to further reduced exhaust emission. This experimental study is conducted to analyze spray characteristics for pintle type injector used in a LPLi (Liquid Phase LPG injection) engine. Since spray parameters including penetration length and spray angle make a role to design injector and engine intake system, spray visualization experiment is performed under atmosphere ambient and charging condition using Mie scattering method. From the experimental result under various LPG formation, the increased propane component decreases penetration length because boiling point of propane is lower than butane. To simulate intake charging condition in MPI engine, spray visualization is performed under high pressure condition. As a result, as ambient pressure is increased from atmosphere to 3.0 bar, penetration length is decreased. However, as ambient pressure is increased from atmosphere to 3.0 bar, spray angle is increased.

  • PDF

The Effect of Solution Treatment on Intergranular Corrosion Resistance of a New Type Ultra Low Carbon Stainless Steel

  • Julin, Wang;Nannan, Ni;Qingling, Yan;Lingli, Liu
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.140-146
    • /
    • 2007
  • In the paper, with corrosion velocity measurement and metallographic observation on specimens after sulfuric acid/ferric sulfate boiling experiment, intergranular corrosion tendency of the new type ultra low carbon stainless steel developed by ourselves which experienced solution treatment at different temperatures was evaluated. A VHX 500 super depth field tridimensional microscope was used to observe corrosion patterns on the sample surfaces. The depth and width of grain boundary corrosion groove were measured by the tridimensional microscope, which indicated that the corrosion degrees of the samples which received solution treatment at different temperatures are quite different. Transgranular corrosion at different degree occurred along with forged glide lines. After comparison it was proved that the stainless steel treated at $1100^{\circ}C$ performs very well against intergranular corrosion.

Experiment on Coolability through External Reactor Vessel Cooling according to RPV Insulation Design (국내원전 단열재 설계특성에 따른 외벽냉각 효과검증 실험)

  • Kang, Kyoung-Ho;Park, Rae-Joon;Kim, Snag-Baik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1578-1583
    • /
    • 2003
  • LAVA-ERVC experiments have been performed to investigate the effect of insulation design features on the coolability in case of the external reactor vessel cooling (ERVC). All the 4 tests have been performed using Alumina iron thermite melt as a corium simulant. Due to the limited steam venting through the insulation, steam binding occurred inside the annulus in the KSNP case simulation. On the contrary, in the tests which were performed for simulating the APR1400 insulation design, sufficient water ingression and steam venting through the insulation lead to effective cool down of the vessel characterized by nucleate boiling. It could be found from the experimental results that modification of the insulation design allowing sufficient ventilation could increase the positive effects of the external reactor vessel cooling.

  • PDF

A Study of Reflood Heat Transfer in Electrically-Heated Fuel Rod Bundle (電氣加熱式 模擬燃料棒 다발에서의 再冠水 熱傳達 硏究)

  • 정문기;박종석;이영환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 1986
  • To predict the fuel clad temperature during the reflooding phase of a LOCA, one may need a knowledge of reflood heat tranfer mechanism in a rod bundle. For this purpose reflooding experiments have been carried out with an electrically heated 3*3 rod bundle. Using the method for the determination of local heat transfer coefficient from the measured wall temperature the parametric effects of coolant flow rate, initial wall temperature, coolant subcooling and heat generation rate on the propagation of rewetting front were investigated. Prediction of the wall temperature histories for these experiments was discussed using REFLUX code with modification of the rewetting temperature correlation. Through this modification, better agreement between experiment and prediction was obtained.

RELAP5/MOD3 Assessment Against a ROSA-IV/LSTF Loss-of-RHRS Experiment

  • Park, Chul-Jin;Han, Kee-Soo;Lee, Cheol-Sin;Kim, Hee-Cheol;Lee, Sang-Keun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.745-750
    • /
    • 1996
  • An analysis of a loss of residual heat removal system (RHRS) event during midloop operation after reactor shutdown was performed using the RELAP5/MOD3 thermal-hydraulic computer code. The experimental data of a 5% cold leg break test conducted at the ROSA-IV Large Scale Test Facility (LSTF) to simulate a main coolant pump shaft seal removal event during midloop operation of a Westinghouse-type PWR were used in the analysis. The predicted core boiling time and the peak primary system pressure showed good agreements with the measured data. Some differences between the calculational results and the experimental results were, however, found in areas of the timing of loop seal clearing and the temperature distribution in a pressurizer. Other calculational problems identified were discussed as well.

  • PDF

Effect of Cold Work on the Stress Corrosion Cracking in Austenitic 304 Stainless Steel (오스테나이트 304 스테인레스 강의 응력부식균열에 미치는 냉간가공의 영향)

  • 강계명;최종운
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.19-28
    • /
    • 1997
  • This study was made of the effect of cold working on the stress corrosion cracking(SCC) of austenitlc 304 stainless steel in boiling 42% $MgCl_2$ solution. For this experiment, specimens cold-worked of 0%, 10%, 20%, 30%, 40% were fabricated respectively, and then experiments of mechanical properties and stress corrosion cracking(SCC) of these specimens were carried out. The results of these experiments indicate that the maximum resistance to SCC showed at 20% of cold working degree and that the SCC susceptibility depended on the volume fraction of deformation-induced martensite by cold working and the work hardening of matrix. On the other hand, the fracture mode was changed. This phenomenon was considered that deformation-induced martensite was grown from transgranular fracture mode to intergranular fracture mode and caused by increased of dislocation density along the slip planes.

  • PDF

A Study on Pressure Drop Characteristics of Refrigerant in Heat Exchanger for Automobile (자동차용 열교환기 냉매의 압력 강하 특성에 관한 연구)

  • 임태우;박종운
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.119-125
    • /
    • 2003
  • An experiment study on pressure drop was carried out for both an adiabatic and a diabatic two-phase flow with pure refrigerants R134a and Rl23 and their mixtures as test fluids in a uniformly heated horizontal tube. The frictional pressure drop during flow boiling is predicted by using two models; the homogeneous model that assumes equal phase velocity and the separate flow model that allows a slip velocity between two phases. The measured frictional pressure drop was compared to a few available correlations. Homogeneous model considerally underpredicted the present data for mixture as well as pure component in the entire mass velocity ranges employed in the present study, while Friedel correlation was found to satisfactorily correlate the frictional pressure drop data as compared to other correlation.

A study on the heat transfer of the turbocharged gasoline engine (터보과급 가솔린기관의 열전달에 관한 연구)

  • 최영돈;홍진관
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.69-82
    • /
    • 1988
  • Heat transfer experiment is carried out during the performance test of the 4-cylinder 4-stroke cycle turbo-charged gasoline engine. Cycle simulation employing the measured pressure in cylinder, the cooling water temperature and flow rate and others is carried out in order to calculate the gas temperature in cylinder. In this simulation combustion process was simulated by Annand's two zone model and suction, compression, and other processes are calculated completely. From this simulation, we can obtain not only the heat transfer coefficient but also the flame speed, turbulent burning velocity, flame factor and the boiling condition of cooling passage. The results are investigated with engine speed, equivalence ratio and spark advance.

  • PDF

인공심장판막의 현황

  • 김형묵
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.94-96
    • /
    • 1989
  • Explosive evaporative removal process of biological tissue by absorption of a CW laser has been simulated by using gelatin and a multimode Nd:YAG laser. Because the point of maximun temperature of laser-irradiated gelatin exists below the surface due to surface cooling, evaporation at the boiling temperature is made explosively from below the surface. The important parameters of this process are the conduction loss to laser power absorption (defined as the conduction-to-laser power parameter, Nk), the convection heat transfer at the surface to conduction loss (defined as Bi), dimensionless extinction coefficient (defined as Br.), and dimensionless irradiation time (defined as Fo). Dependence of Fo on Nk and Bi has been observed by experiment, and the results have been compared with the numerical results obtained by solving a 2-dimensional conduction equation. Fo and explosion depth (from the surface to the point of maximun temperature) are increased when Nk and Bi are increased.To find out the minimum laser power for explosive evaporative removal process, steady state analysis has been also made. The limit of Nk to induce evaporative removal, which is proportional to the inverse of the laser power, has been obtained.

  • PDF

A study on heat transport limitation for a perfluorocarbon heat pipe (PFC 히트파이프의 열전달 한계에 관한 연구)

  • 강환국;김재진;김철주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.313-320
    • /
    • 1999
  • A PFC(Perfluorocarbon) heat pipe has been used recently for cooling of GTO(gate turn off) thyristors or diodes in electric commuter trains. The present study was conducted to determine heat transport limitation of a PFC heat pipe which is one of the important parameters in heat pipes design. The variables such as tube diameter, fill charge ratio, internal surface structure and operating temperature were examined by way of experiment. Experimental data showed that the heat transport limitation of PFC heat pipe was considerably low and mostly dependent on tube diameter, with the value of 440~500W for d$o$/=22.23mm and 150~200W for d$o$=15.88mm. The other parameters had negligible effects, except for the case of small charge ratio less than 30%. Some correlations proposed by previous studies were in agreement with data from this study within 10~30%.

  • PDF