• Title/Summary/Keyword: Boiler Air Flow Control

Search Result 17, Processing Time 0.028 seconds

Dynamic Response Improvement Method for Combustion Air Flow Control in Coal Fired Power Plant (석탄 화력발전소 연소공기량 제어 동특성 개선방안)

  • Yu, Kwang-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.88-95
    • /
    • 2012
  • When controling combustion air flow in coal fired power plant the furnace safety must be considered first prior to plant efficiency. therefore it is very important to set air flow demand exactly for safe operation and maintenance. This paper analyze air flow control loop in power plant and introduce the method to improve dynamic response time. Simulation result shows this scheme is adoptable and provide better performance.

Compensation Logics of Controller in Korean Standard Super Critical Once Through Boiler

  • Kim, Eun-Gee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.65.2-65
    • /
    • 2001
  • There are not only lots of controllers such as UMC(Unit Master Controller), BMC(Boiler Master Controller), Fuel Flow controller, Air flow controller, Feed water flow controller, S/H R/H Temperature controller and so on, but also compensation controller such as BTU compensator, Fuel/Water ratio controller and O2 Co controller to take automatic control in the super critical once through boiler. It is important to make complete automation of boiler to use the compensation controller like BTU compensator. For example, In case of some boiler condition, operator has to change combustion parameter for changing the coal, on the contrary BTU compensator can calculate set value of the fuel flow and reset the fuel flow demand by itself. This paper shows us the logic and instruction regarding compensation controller of boiler that can be operated automatically.

  • PDF

Part Load Performance Characteristics of Domestic Wood Pellet Boiler (가정용 목재 펠릿 보일러에 대한 부분부하 운전 특성)

  • Kang, Sae Byul;Kim, Jong Jin;Kim, Hyouck Ju;Park, Hwa Choon;Choi, Kyu Sung;Sim, Bong Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.103.1-103.1
    • /
    • 2010
  • Recently domestic wood pellet boilers are installed in rural and forestry houses. The fuel price per lower heating value of wood pellet is about 20 % lower than that of heating oil on July 2010. In spite of lower price of wood pellet, a few user of wood pellet boiler complain expensive fuel cost. One of this reason is inaccurate or improper air-fuel ratio setting of wood pellet boiler. O2 concentration of flue gas of domestic wood pellet boiler is about 9.7 % and there are few domestic wood pellet boiler which can control air-fuel ratio automatically. We tested a domestic wood pellet boiler in changing boiler thermal output and air-fuel ratio. The nominal boiler thermal output is 25 kW (21 500 kcal/h). We measured thermal efficiency and flue gas concentrations such as CO and NOx at each boiler thermal load with various air-fuel ratio. The results show that if air flow rate is the same as full load and part load, thermal efficiency of part load of 40 % drops about 7.7 %p compared to boiler full load case.

  • PDF

MODELING OF PRESSURE CONTROL SYSTEM OF BOILER (보일러 풍압 제어 계통의 모델링)

  • Park, Min-Ho;Mok, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.362-366
    • /
    • 1987
  • The amount of inflowing Air into the boiler has controlled by manipulating the opening of valve, damper and vane, as fan operated by induction motor operats at constant speed, but these control methods are not efficient. Thus VVVf(Variable Voltage Variable Frequency) control of fan has selected to improve efficiency and to acquire power savings. Control system of Air Flow is affected by nonlinearity caused by load variation, vane opening, etc. The analysis of control parameter causing nonlinearity is needed to acquire optimal control and excellent transient response. This paper provides modeling of boiler with various load conditions and vane opening, and analysis of this system.

  • PDF

Analysis of Transient Characteristics of a Steam Power Plant System (증기발전 시스템의 과도상태 특성 해석)

  • Park, Keun-Han;Kim, Tong-Seop;Ro, Sung-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.967-975
    • /
    • 2000
  • Transient characteristics of a boiler and turbine system for a steam power plant are simulated. One-dimensional unsteady models are introduced for each component. An interaction between boiler and turbine and a control of the water level in the drum are taken into account. Transient responses of the system to the variations of main system variables such as fuel and air flow rate, cooling water injection rate at the attemperator, gas recirculation rate at the furnace and opening of the turbine control valve are examined. Effect of fluid inertia and tube wall thermal inertia on predicted dynamic behavior is investigated.

Particulate Two-Phase Flow Analysis for Fouling Prediction(I)-Design of Hot Wind Tunnel and Its Performance Experiment- (파울링 예측을 위한 가스-입자 이상 유동 해석(1)-고온 풍동 설계 및 성능실험-)

  • Ha, Man-Yeong;Lee, Dae-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3695-3705
    • /
    • 1996
  • We designed the hot wind tunnel to reproduce the conditions of utility boiler and carried out its performance test, in order to investigate the particulate two-phase flow behaviour, the fouling and heat transfer characteristics to the heat exchanger. The hot wind tunnel introduces the control system to control the temperature in the test section. The particle is injected into the hot gas stream. The fouling probe (cylindrical tube) is positioned normal to the particulate gas-particle two-phase flow and cooled by the air. The temperature of gas and cooling air, and temperature in the fouling probe are measured as a function of time, giving the local and averaged heat transfer and fouling factor. The shape of particulate deposition adhered to the fouling probe is also observed.

The Steam Temperature Control of Renovated Boiler in 100MW Power Plant (100MW 발전소 개조 보일러의 증기온도 제어)

  • Lim, Geon-Pyo;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1935-1940
    • /
    • 2011
  • The control logic of steam temperature was redesigned, tested and applied to the power plant after its steam temperature equipments had been revised. This power plant use the ancillary gas gotten in the process of making iron in the steel mill. The boiler of power plant has the superheater and reheater to make the superheated steam. The superheater and reheater have the spray valve to control their temperature. The reheater has the gas bypass damper additionally in this plant. The control logics were redesigned in cascade forms and the initial parameters of control logics were calculated from the several step tests. The final parameters could be obtained through the several repeated tests and the feedforward functions were added by temperature deviation and air flow. The power plant is being commercially-operated normally by improved control logics and It is expected that this improved controls help the efficiency improvement and safe operation of plant.

Study on application of domestic development DCS for S/H temp in the power plant (발전소 과열증기 온도제어 시스템의 국산 DCS 적용에 관한 연구)

  • 박익수;김은기;박성혁;이기원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.292-296
    • /
    • 1992
  • There are lots of disturbance in the super heater temperature control system of power plant boiler as follows. 1.Burner light off. 2.Excess Air. 3.Burner tilt. 4.G.R fan flow. Temperature control system of super heater in the power plant has delay time about 5 min. So it is difficult to control the super heater temperature in the power plant. This paper show us the application of domestic development DCS to control the super heater temperature in seoul #5 thermal power plant unit.

  • PDF

Method and Analysis of Dynamic Simulation for Ondol Heating (온돌 난방에 대한 동적 시뮬레이션 및 분석)

  • Hong, Hi-Ki;Kim, Si-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.375-382
    • /
    • 2010
  • Ondol heating, a kind of radiant floor heating, is a main method used in housing units in Korea. Building energy simulation including ondol and relevant facilities has not been performed due to its complexity. For evaluating energy consumption and indoor temperature variation, a new method should be proposed. At the present work, a dynamic simulation on ondol heating was tried by combining TRNSYS and EES. Characteristic functions for a pump, hot water coils and a gas boiler were simultaneously solved by EES, and calculated flow rates and supply temperature of hot water were provided as inputs of the active layer of TYPE 56 in TRNSYS. The results by the simulation on a typical housing unit in Korea shows a good trend in a viewpoint of actual behavior of ondol heating.

Development of Control Program for Methane-hydrogen Fuel Conversion Based on Oxygen Concentration in Exhaust Gas (배기가스 내 산소 농도 기반 메탄-수소 연료 전환 제어 프로그램 개발)

  • EUNJU SHIN;YOUNG BAE KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • Carbon neutrality policies have been strengthened to reduce emissions, and the importance of technology road maps has been emphasized. In the global industrial boiler market, carbon neutrality is implemented through fuel diversification of methane-hydrogen mixture gas. However, various problems such as flashback and flame unstability arise. There is a limit to implementing the actual system as it remains in the early stage. Therefore, it is necessary to secure the source technology of methane-hydrogen hybrid combustion system applicable to industrial fields. In this study, control program for methane-hydrogen fuel conversion was developed to expect various parameters. After determining the hydrogen mixing ratio and the input air flow, the fuel conversion control algorithm was constructed to get the parameters that achieve the target oxygen concentration in the exhaust gas. LabVIEW program was used to derive correlations among hydrogen mixing rate, oxygen concentration in exhaust gas, input amount of air and heating value.