• Title/Summary/Keyword: Body shop

Search Result 57, Processing Time 0.031 seconds

Implementation of a Vehicle Production Sequencing Module Using Constraint Satisfaction Technique for Vehicle Production Planning System (자동차 생산계획 시스템에서 제약만족기법을 이용한 생산 시퀀스 모듈 구현)

  • Ha, Young-Hoon;Woo, Sang-Bok;Ahn, Hyun-Sik;Hahn, Hyung-Sang;Park, Young-Jin
    • IE interfaces
    • /
    • v.16 no.3
    • /
    • pp.352-361
    • /
    • 2003
  • Vehicle manufacturing plant is a typical mixed-model production system. Generally it consists of three main shops including body shop, painting shop and assembly shop in addition to engine shop. Each shop contains diverse manufacturing processes, all of which are integrated in a form of flow line. Due to the high pressure from the market requesting small-volume large variety production, production planning becomes very critical for the competitiveness of automotive industry. In order to save costs and production time, production planning system is requested to meet some designated requirements for each shop: to balance the work load in body and assembly shops, and to minimize the number of color changes in painting shop. In this context, we developed a sequencing module for a vehicle production planning system using the ILOG Solver Library. It is designed to take into account all the manufacturing constraints at a time with meeting hard constraints in body shop, minimizing the number of soft constraints violated in assembly shop, and minimizing the number of color changes in painting shop.

A Simulation Study on the Operation of the Painted Body Storage in an Automobile Factory (자동차 공장의 Painted Body Storage 운영에 대한 시뮬레이션 연구)

  • Moon, Dug-Hee;Song, Cheng;Ha, Jae-Hoon
    • IE interfaces
    • /
    • v.18 no.2
    • /
    • pp.136-147
    • /
    • 2005
  • This paper introduces a simulation study regarding the operation of the Painted Body Storage (PBS) in an automobile factory. In the paint shop of the factory, same colored bodies are grouped together in order to increase the effectiveness of process, for example decrease the loss of cleaning the painting-gun when the color of body changes from one to another. However the production of automobiles in the assembly shop is a typical example of the mixed model assembly production. Therefore PBS locates between the paint shop and the assembly shop for control the input sequence of bodies to the assembly shop, and it enables to meet the smoothing requirement of assembly sequence. There are highly restricted constraints on the assembly sequence in a assembly shop. Those are spacing restriction and smoothing restriction. If such restrictions are violated, conveyor-stop or utility work will be necessary. Thus the major objective of PBS is to control the assembly sequence in a way to meet the two restrictions. In this paper a case study of PBS in an automotive factory is introduced. The storage/retrieval algorithms are suggested and the proposed system is verified using simulation models. Sensitivity analysis for operating factors is also conducted.

Manufacturing Preparations in the New Car Development for an Automotive Body Shop by Digital Manufacturing Technologies (차체공장 디지털생산 기술 적용을 통한 신차 개발 생산준비 업무 수행)

  • 노상도;박영진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.118-126
    • /
    • 2003
  • Digital Manufacturing is a technology facilitating effective developments and agile productions of the product via digital computer models representing physical and logical schema and the behavior of the real manufacturing systems including manufacturing resources, environments and products. For the successful application of this technology, a digital factory as a well-designed and an integrated environment is essential. In this paper, we constructed the sophisticated digital factory of a Korean automotive company's body shop, and conducted precise simulations of unit cell, lines and the whole factory for the collision check, the production flow analysis and the off-line programming. We expect that this digital factory of the body shop helps us achieve great savings in time and cost for many manufacturing preparation activities of the new car development.

SIMULATION AND ANALYSIS OF AN AUTOMOBILE PRODUCTION FACILITY

  • Park, Young-Hong
    • Korean Business Review
    • /
    • v.13
    • /
    • pp.263-273
    • /
    • 2000
  • Mercedes-Benz United States International (MBUSI) built a manufacturing facility for the production of the new M-Class All Activity Vehicle (AAV). This plant consists of three large sequential shops: the Body Shop, the Paint Shop, and the Assembly Shop. When the plant reaches full production, 270 vehicles will be produced each day by two shifts. A finished vehicle is intended to leave the end of the assembly line every 3.6 minutes. The main objective of this study is to simulate the design and operational policies of the AAV assembly facility and to verify that the daily throughput requirements can be met. The simulation study also answered the following questions: What is the maximum throughput (capacity) of the facility? What is the daily distribution of throughput? Does the current design produce the required throughput of 270 cars per day? How do the buffers behave in terms of quantity fluctuations? What are the possible bottlenecks to the desired throughput? This paper provides a description of the integrated simulation model to analyze the capability of the production facilities at MBUSI. This paper includes the inputs used for the development of each of the three individual models: the Body Shop, the Paint Shop, and the Assembly Shop. Additionally, it includes descriptions of the model features and the assumptions that were made.

  • PDF

Implementation of Virtual Manufacturing Technology to Manual Spot Welding Process in Automotive Body Shop (자동차 차체공장의 매뉴얼 점용접 공정에 가상생산기술 적용)

  • Jung, Kwang-Jo;Lee, Kun-Sang;Park, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1166-1172
    • /
    • 2003
  • The extremely strong competition among the world automobile industries has introduced the concept of PLM in the total production activities, one of whose major components is VM(Virtual Manufacturing). If the production lines are equipped with robots, the application of OLP in the virtual space is fully mature. However, in the point of the investment's and the maintenance's view, there are always some activities, which can not be automated: for example, typically the manual welding for prefixing in the automobile body shop and the material loading. Process planning for these activities, therefore, are decided mainly by experiences, which caused many repeated rework of the processes and the inconvenience of the workers, and resulted consequently in the reduction of the productivity and the safety of the workers. In this paper, the optimal dimension of the welding gun and its handle position and the optimal working path is simulated and decided by use of DELIMN/IGRIP and DELMIA/Ergo and the working area modelized in the virtual workcell of DELMIA.

  • PDF

Importance of Fundamental Manufacturing Technology in the Automotive Industry and the State of the Art Welding and Joining Technology (자동차 산업에서 뿌리기술의 중요성 및 최신 용접/접합 기술)

  • Chang, InSung;Cho, YongJoon;Park, HyunSung;So, DeugYoung
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • The automotive vehicle is made through the following processes such as press shop, welding shop, paint shop, and general assembly. Among them, the most important process to determine the quality of the car body is the welding process. Generally, more than 400 pressed panels are welded to make BIW (Body In White) by using the RSW (Resistance Spot Welding) and GMAW (Gas Metal Arc Welding). Recently, as the needs of light-weight material due to the $CO_2$ emission issue and fuel efficiency, new joining technologies for aluminum, CFRP (Carbon Fiber Reinforced Plastic) and etc. are needed. Aluminum parts are assembled by the spot welding, clinching, and SPR (Self Piercing Rivet) and friction stir welding process. Structural adhesive boning is another main joining method for light-weight materials. For example, one piece aluminum shock absorber housing part is made by die casting process and is assembled with conventional steel part by SPR and adhesive bond. Another way to reduce the amount of the car body weight is to use AHSS (Advanced High Strength Steel) panel including hot stamping boron alloyed steel. As the new materials are introduced to car body joining, productivity and quality have become more critical. Productivity improvement technology and adaptive welding control are essential technology for the future manufacturing environment.

A Virtual Fitting System Using The Top and Bottom Image of Garment (상하의 의류 영상을 이용한 가상 의류 착의 시스템)

  • Choi, Ran;Cho, Chang-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.7
    • /
    • pp.941-950
    • /
    • 2012
  • A virtual garment fitting system which fits the top and bottom of a garment on 3D body data is introduced. This system uses the laser scanned 3D body data and the digital images photographed the front and back of a garment. The digital images are modeled to reflect tensions among particles in the images and the friction and gravity effects are considered in the fitting process to the body data. When a bottom is fitted, a virtual belt to hold the bottom in the waist is introduced since gravity effects pull down it. Also the process for fitting the top and bottom on layers is proposed here. The system has the strengths that it uses only the front and back image of a garment instead of using complicated patterns of a garment, and provides a realistic fit result as a 3D figure. As on-line retailing shop in present displays front and back images of garments, this system also does. However this system provides a differentiated service to user than present retailing shop as showing a 3D fit image. It will make a new trend in online shop retailing of garment.

Comparison of the Two Layout Structures in Automotive Body Shops Considering Failure Distributions (자동차 차체공장에서 고장분포를 고려한 두 종류 배치구조에 대한 비교)

  • Kim, Ha Seok;Wang, Guan;Shin, Yang Woo;Moon, Dug Hee
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.5
    • /
    • pp.470-480
    • /
    • 2015
  • There are many challenges in manufacturing system for new factory construction. Although factories produce same product, the layout of each factory may be different. The body shop in an automotive factory is a typical flow line with assembly, but the layout concept of the line varies among factories. In this paper, two types of layouts in the body shops of automotive factories, one for layered build and the other for modular build, are compared using simulation study. The simulation experiments indicate that the modular build layout is better than the layered build layout with respect to production rate. The effects of various failure distributions on the throughputs are also investigated, and some insights are suggested regarding the layout concept.

Virtual Manufacturing for an Automotive Company (II) - Constuction and Operation of a Virtual Body Shop (자동차 가상생산 기술 적용 (II) - 차체공장 가상플랜트 구축 및 운영)

  • Noh, Sang-Do;Hong, Sung-Won;Kim, Duk-Young;Sohn, Chang-Young;Hahn, Hyung-Sang
    • IE interfaces
    • /
    • v.14 no.2
    • /
    • pp.127-133
    • /
    • 2001
  • Virtual Manufacturing is a technology facilitating effective development and agile production of products via computer models representing physical and logical schema and the behavior of the real manufacturing systems. For the successful application of this technology, a virtual plant as a well-designed and integrated environment is essential. We propose a series of systematic approaches and effective methods for construction and operation of a virtual plant in this paper, such as a 3-D CAD modeling, cell and line simulations and databases. We developed key technologies for measuring and 3-D CAD modeling of many equipments, facilities and structures of the buildings. In order to study the benefit of virtual manufacturing, we constructed a sophisticated virtual plant model of a Korean automotive company's body shop, and conducted precise simulations of unit cell, lines and the whole plant. We could obtain the benefit of savings in time and cost in many manufacturing preparation activities in the new car development processes.

  • PDF