• 제목/요약/키워드: Body piercing

검색결과 44건 처리시간 0.021초

Body Piercer의 성역할 정체감, 자아개념, 자아강도에 따른 신체장식행동에 관한 연구 (A Study on the Behavior of Body Piercing According to Body Piercer's Feeling of Depression to a Sex Role Identity, Self-Conception and Self-Strength)

  • 윤경빈;유태순
    • 한국의류산업학회지
    • /
    • 제8권5호
    • /
    • pp.537-544
    • /
    • 2006
  • The purpose of this study is as well as Body decoration is a means to identify self-expression from the original nature of an individual freedom and originality, so there remains a race has not a cloth on, but there is no race does not pierce, it has been done with the beginning of a mankind. Subjects for this study were 202 persons, who experienced body piercing with twenties as the central figure. Statistical analysis was done by using SPSS 10.0 version and included AVOVA, Cronbach ${\alpha}$ realbility, Multiple Regression Analysis, Duncan's multiple range test, and Cross tabulation analysis. The result are as follow, The difference of self-conception classified by body piercer's sex distinction did not show significantly. Of the body piercer's feeling of depression to a sex role, neuter gender's feeling of depression showed highly in case of the physical self and the moral self and in case of the social self neuter's feeling and feminine gender's feeling to a sex role showed high. For the reason why he/she did body piercing, neuter gender's feeling showed high in case of influenced by the fashion and masculine gender's and feminine gender's feeling showed high in case of influenced by the curiosity. The body decoration classified by self-conception of body piercer did not show a significant difference.

Towed underwater PIV measurement for free-surface effects on turbulent wake of a surface-piercing body

  • Seol, Dong Myung;Seo, Jeong Hwa;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권3호
    • /
    • pp.404-413
    • /
    • 2013
  • In the present study, a towed underwater particle image velocimetry (PIV) system was validated in uniform flow and used to investigate the free-surface effects on the turbulent wake of a simple surface-piercing body. The selected test model was a cylindrical geometry formed by extruding the Wigley hull's waterplane shape in the vertical direction. Due to the constraints of the two-dimensional (2D) PIV system used for the present study, the velocity field measurements were done separately for the vertical and horizontal planes. Using the measured data at several different locations, it was possible to identify the free-surface effects on the turbulent wake in terms of the mean velocity components and turbulence quantities. In order to provide an accuracy level of the data, uncertainty assessment was done following the International Towing Tank Conference standard procedure.

Self-Piercing Rivet과 Hybrid Joining을 이용한 자동차용 선도장 칼라강판과 용융아연도금강판의 접합부 기계적 성질 평가 (A Study on Tensile Shear Characteristics of Dissimilar Joining Between Pre-coated Automotive Metal Sheets and Galvanized Steels with the Self-Piercing Rivet and Hybrid Joining)

  • 배진희;김재원;최일동;남대근;김준기;박영도
    • Journal of Welding and Joining
    • /
    • 제34권1호
    • /
    • pp.59-67
    • /
    • 2016
  • The automotive manufactures increase their use of lightweight materials to improve fuel economy and energy usage has a significant influence on the choice of developing materials. To meet this requirements manufacturers are replacing individual body parts with lightweight metals, for these the process treating and painting surfaces is changing. The pre-coated steels are newly developed to avoid the conventional complex and non-environmental painting process in the body-in-white car manufacturing. The development of new joining techniques is critically needed for pre-coated steel sheets, which are electrically non-conductive materials. In the present study, dissimilar combination of pre-coated steel and galvanized steel sheets were joined by the self-piercing rivet, adhesive bonding and hybrid joining techniques. The tensile shear test and free falling high speed crash test were conducted to evaluate the mechanical properties of the joints. The highest tensile peak load with large deformation was observed for the hybrid joining process which has attained 48% higher than the self-piercing rivet. Moreover, the hybrid and adhesive joints were observed better strain energy compared to self-piercing rivet. The fractography analyses were revealed that the mixed mode of cohesive and interfacial fracture for both the hybrid and adhesive bonding joints.

곡률을 갖는 셀프-피어싱 리벳 접합시편의 피로수명 평가 (Assessment of Fatigue Life on Curved Self-Piercing Rivet Joint Specimen)

  • 김민건;조석수;김동열
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.71-79
    • /
    • 2010
  • One of methods that accomplish fuel-efficient vehicle is to reduce the overall vehicle weight by using aluminum structure typically for cross members, rails and panels in body and chassis. For aluminum structures, the use of Self Piercing Rivet(SPR) is a relatively new joining technique in automotive manufacture. To predict SPR fatigue life, fatigue behavior of SPR connections needs to be investigated experimentally and numerically. Tests and simulations on lap-shear specimen with various material combinations are performed to obtain the joining strength and the fatigue life of SPR connections. A Finite element model of the SPR specimen is developed by using a FEMFAT SPR pre-processor. The fatigue lives of SPR specimens with the curvature are predicted using a FEMFAT 4.4e based on the liner finite element analysis.

수면관통형 터널 프로펠러의 성능해석을 위한 실험적 연구 (An Experimental Study on the Performance of a Surface Piercing Propeller in Tunnel)

  • 정성욱;이승희
    • 대한조선학회논문집
    • /
    • 제43권3호
    • /
    • pp.294-303
    • /
    • 2006
  • A surface piercing propeller (SPP) in tunnel has been proposed recently as a new propulsion system for a high speed air cavity ship. The purpose of the present study is to investigate the characteristics of the SPP in tunnel through a series of model tests. A model propulsion system is placed on a dummy body made of Acrylics. The tunnel is divided into two regions by a guide vane extending from the inlet to the center of the propeller shaft. Air has been supplied from an air nozzle placed at the bottom of the dummy body and the changes in propeller performances caused by the air flow are investigated. The measurements are done for open water and in-tunnel conditions, both for fully and partially submerged propeller. The influence of the guide vane configurations on the propeller performance is also studied. The experiments are performed at the variable pressure circulation water channel of Inha University

수면관통형 터널 프로펠러의 성능해석을 위한 실험적 연구 (An Experimental Study on the Performance of a Surface Piercing Propeller in Tunnel)

  • 정성욱;이승희
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2007년도 특별논문집
    • /
    • pp.107-117
    • /
    • 2007
  • A surface piercing propeller (SPP) in tunnel has been proposed recently as a new propulsion system for a high speed air cavity ship. The purpose of the present study is to investigate the characteristics of the SPP in tunnel through a series of model tests. A model propulsion system is placed on a dummy body made of Acrylics. The tunnel is divided into two regions by a guide vane extending from the inlet to the center of the propeller shaft. Air has been supplied from an air nozzle placed at the bottom of the dummy body and the changes in propeller performances caused by the air flow are investigated. The measurements are done for open water and in-tunnel conditions, both for fully and partially submerged propeller. The influence of the guide vane configurations on the propeller performance is also studied. The experiments are performed at the variable pressure circulation water channel of Inha University.

  • PDF

Numerical Simulation of Breaking Waves around a Two-Dimensional Rectangular Cylinder Piercing Free Surface

  • Kim, Seung-Nam;Lee, Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • 제5권4호
    • /
    • pp.29-43
    • /
    • 2001
  • In this paper, free surface flows around an advancing two-dimensional rectangular cylinder piercing the free surface are studied using numerical and experimental methods. Especially, wave breaking phenomenon around the cylinder is treated in detail. A series of numerical simulations and experiments were performed for the purpose of comparison. For the numerical simulations, a finite difference method was adopted with a rectangular grid system, and the variation of the free surface was computed by the marker density method. The computational results are compared with the experiments. It is confirmed that the present numerical method is useful for the numerical simulation of nonlinear free surface waves around a piercing body.

  • PDF

핵연료 용기의 일체형 단조공정 개발에 관한 연구 (A Study on the Development of Integral Forging Process for Cask of Nuclear Fuel)

  • 김민우;조종래;김동권;김동영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.369-372
    • /
    • 2006
  • Monolithic forging of cask is required continuously. Body-base monolithic forging of cask has advantage of an economical manufacturing process and better reliability for nuclear applications. Through the finite element analysis and parametric study of design variables, those are die angle, groove length and flange thickness, the optimal dimensions of preform and die sets are determined in order to develop a suitable forging process for body-base monolithic forging. To verify the result of finite element analysis, the physical model of 1/30 scale of actual product using plasticine was carried out. The result of this experiment, deformed shapes were very similar to the finite element analysis. As a result of this work, the special piercing method was developed using blank material consisting of a flange, groove and squared part.

  • PDF

차체 셀프-피어싱 리벳 접합의 구조강성 및 피로수명 평가 (Assessment of Structural Stiffness and Fatigue Life in Self-Piercing Rivet(SPR) Joint of Car Body)

  • 김민건;이근찬;이병준
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1174-1182
    • /
    • 2004
  • Recently, Self Piercing Rivet(SPR) has been spotlighted in the automotive industry as a substitutive resort of spot welding and has also been watched by the designer as lightening a car body due to their superior assembly processes. Fatigue behavior of SPR joint needs to be investigated experimentally and numerically to predict its structural stiffness and fatigue life. Testing of lap-shear specimens with various material combinations is performed to obtain the joining strength and the fatigue life of SPR connections. The simulation of SPR lap-shear specimens is also conducted to obtain the structural stiffness of SPR connections under different material combinations. A Finite element model of the SPR lap-shear specimen is developed using a FEMFAT SPR pre-processor. The fatigue lift of SPR specimen is predicted using a FEMFAT 4.4e based on the liner finite element analysis.