• 제목/요약/키워드: Body motion

검색결과 2,105건 처리시간 0.036초

6축 힘측정판을 이용한 수직방향 전신진동에 대한 겉보기질량 및 겉보기편심질량에 대한 고찰 (Study of Apparent Mass and Apparent Eccentric Mass to Vertical Whole-body Vibration by Using Strain-gage Type Six-axis Force Plate)

  • 전경진;김민석;안세진;정의봉;유완석
    • 한국소음진동공학회논문집
    • /
    • 제21권10호
    • /
    • pp.897-904
    • /
    • 2011
  • When whole-body is exposed to vertical vibration, asymmetry shape of human body affects the response on the translational(fore-aft, lateral, vertical) and rotational(roll, pitch, yaw) motion. While the translational motion has been studied with various titles, it has been rare to study the rotational motion of human body exposed to vertical excitation because of lack of experimental equipment. This study was performed by using a 6-axis force plate installing strain gage type sensors for the rotational response. Sixteen male subjects were exposed to vertical vibration on rigid seat in order to investigate apparent mass of three translational motion and apparent eccentric mass of three rotational motion. Random signal was generated to make excitation vibration which was on an effective frequency range of 3~40 Hz, and magnitude of 0.224 m/$s^2$ r.m.s. The frequency range and magnitude used was selected for the vibration of passenger vehicle on idling condition. As the result, cross-axis apparent masses of fore-and-aft and lateral direction were not significant showing 20 % and 3 % of vertical apparent mass relatively. And apparent eccentric mass of pitch motion was dominant when compared to that of roll and yaw motion, which is reasoned by asymmetry direction of human body sitting on a seat.

Extraction of Motion Parameters using Acceleration Sensors

  • Lee, Yong-Hee;Lee, Kang-Woo
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권10호
    • /
    • pp.33-39
    • /
    • 2019
  • 본 논문에서는 인체의 활동량을 측정하기 위해 가속도 센서로 부터 얻은 운동신호를 파라미터로 모델링 하는 방법을 제안한다. 상체와 하체의 움직임이 동시에 일어나지 않는 경우, 현재의 단체널 방식의 운동량 분석방법은 많은 오차를 수반하게 된다. 본 연구에서는 3축 가속도 센서를 팔과 다리에 부착하고 인체의 활동을 측정한 후, 각 채널 별로 팔과 다리의 운동량을 계산하고, 채널별로 선형예측계수를 얻는다. 또한, 상체와 하체운동간의 교차상관도를 측정함으로써 상체와 하체의 주기성을 판단하게 된다. 선형예측계수와 주기 값은 운동의 종류와 이에 따른 운동량을 측정하는 자료로 이용하게 된다. 결과에서 제안한 방법의 유효성을 확인하기 위해 계단내려가기, 계단오르기, 언덕오르기, 언덕내려가기 등의 4가지 운동을 측정하여, 제시한 파라미터 모델의 유용성을 확인한다.

부유체-몰수체 상호작용을 이용한 부유체 상하운동 저감에 대한 실험적 연구 (Experimental Study on the Reduction of Vertical Motion of Floating Body Using Floating-Submerged Bodies Interaction)

  • 신민재;구원철;김성재;허상환;민은홍
    • 대한조선학회논문집
    • /
    • 제54권6호
    • /
    • pp.485-491
    • /
    • 2017
  • An experimental study on the reduction of vertical motion of floating body using floating-submerged body interaction was performed in a two-dimensional wave channel. The system consisting of a floating and submerged body that only move vertically was modeled. This experiment was designed based on the results of theoretical analysis of two-body interaction. The results showed a tendency to significant reduction of heave RAO of floating body due to submerged body. Various connection line stiffness and dimension of the submerged body were applied to investigate the effect of two-body interaction on the vertical motion of the bodies, Heave RAOs of the floating-submerged body were compared with those of single body. From the comparison study, we obtained an optimum condition of connection line and dimension of submerged body for maximum heave reduction at the resonant period of single body.

Evaluation of Dynamic Characteristics for a Submerged Body with Large Angle of Attack Motion via CFD Analysis

  • Jeon, Myungjun;Mai, Thi Loan;Yoon, Hyeon Kyu;Ryu, Jaekwan;Lee, Wonhee;Ku, Pyungmo
    • 한국해양공학회지
    • /
    • 제35권5호
    • /
    • pp.313-326
    • /
    • 2021
  • A submerged body with varied control inputs can execute large drift angles and large angles of attack, as well as basic control such as straight movement and turning. The objective of this study is to analyze the dynamic characteristics of a submerged body comprising six thrusters and six control planes, which is capable of a large drift angle and angle of attack motion. Virtual captive model tests via were analyzed via computational fluid dynamics (CFD) to determine the dynamic characteristics of the submerged body. A test matrix of virtual captive model tests specialized for large-angle motion was established. Based on this test matrix, virtual captive model tests were performed with a drift angle and angle of attack of approximately 30° and 90°, respectively. The characteristics of the hydrodynamic force acting on the horizontal and vertical surfaces of the submerged body were analyzed under the large-angle motion condition, and a model representing this hydrodynamic force was established. In addition, maneuvering simulation was performed to evaluate the standard maneuverability and dynamic characteristics of large-angle motion. Considering the shape characteristics of the submerged body, we attempt to verify the feasibility of the analysis results by analyzing the characteristics of the hydrodynamic force when the large-angle motion occurred.

요추 관절가동범위와 신체압력중심을 이용한 신체균형능력 분석 및 훈련 콘텐츠 (Analysis and Training Contents of Body Balance Ability using Range of Motion of Lumbar Spine and Center of Body Pressure)

  • 구세진;김동연;신성욱;정성택
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.279-287
    • /
    • 2019
  • 본 논문에서는 신체의 움직임 정보와 족압 분포의 변화를 측정하여 신체 균형 능력을 분석하고자 하였다. 그래서 관성측정장치와 FSR 센서를 사용하여 관절가동범위와 신체압력중심을 측정하고 분석할 수 있는 프로그램을 개발하였고, 이에 대한 결과를 바탕으로 균형 능력 개선에 도움을 줄 수 있는 콘텐츠를 제작하였다. 이 프로그램에서 측정된 관절가동범위와 신체압력중심의 정량적인 값을 실시간으로 시각화하여 사용자가 결과를 쉽게 알 수 있도록 하였다. 또한 콘텐츠는 측정된 균형정보를 바탕으로 난이도가 조절되며 균형능력을 개선하고자 하는 방향에 맞춰 수행할 수 있도록 제작되었다. 이것은 사용자의 동작에 따라 움직이는 물체를 보면서 진행하는 시각 되먹임 방법을 이용하여 집중력과 참여의지를 높여 더욱 효과적인 균형 훈련 결과를 기대할 수 있다.

경사 입사파중 부분 반사 안벽과 부유체의 상호작용 (Interaction of a Floating Body with a Partially Reflective Sidewall in Oblique Waves)

  • 조일형
    • 한국해안·해양공학회논문집
    • /
    • 제21권5호
    • /
    • pp.410-418
    • /
    • 2009
  • 선형포텐셜이론을 가정하여 부분 반사 안벽 앞에 계류된 부유체의 동유체력과 운동응답을 해석할 수 있는 경계요소법을 개발 적용하였다. 동유체력인 부가질량과 감쇠계수는 부유체의 잠긴깊이와 안벽에서의 반사율 그리고 부유체와 안벽사이의 떨어진 거리에 밀접한 관련이 있다. 특히 안벽에서의 반사율은 안벽과 부유체사이의 제한유체영역내에서 발생하는 공진현상에 의하여 증폭된 운동변위의 피크값을 줄이는 등 운동응답에 중요한 영향을 미친다. 개발된 수치해석법은 부유체의 형상, 입사각, 안벽의 속성, 입사파의 특성 등의 변화에 따른 부유체의 운동성능을 평가하는데 이용될 것이며, 또한 항만내 계류된 선박의 운동특성을 고려한 항만설계의 기초자료로 활용 될 것이다.

두 기하학적 비선형 효과들을 고려한 대변위 강체운동을 하는 보의 동적 모델링 방법 (Dynamic Modeling Method for Beams Undergoing Overall Rigid Body Motion Considering Two Geometric Non-linear Effects)

  • 김나은;유홍희
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.1014-1019
    • /
    • 2003
  • A dynamic modeling method for beams undergoing overall rigid body motion is presented in this paper. Two special deformation variables are introduced to represent the stretching and the curvature and are approximated by the assumed mode method. Geometric constraint equations that relate the two special deformation variables and the cartesian deformation variables are incorporated into the modeling method. By using the special deformation variables, all natural as well as geometric boundary conditions can be satisfied. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the dynamic response when overall rigid body motion is involved.

충격력을 받는 회전하는 외팔 보의 동적 해석 (Dynamic Analysis of an Impulsively Forced Rotating Cantilever Beam)

  • 임홍석;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제16권3호
    • /
    • pp.226-232
    • /
    • 2006
  • This paper presents the dynamic analysis of an impulsively forced rotating cantilever beam with rigid body motion. The transient response induced by the impulsive force and the rigid body motion of the beam are calculated using hybrid deformation variable modeling with the Rayleigh-Ritz assumed mode methods. The stiffness variation effect due to the rigid body motion of the beam is considered in this study Also, the effects of the impulsive force position and the angular velocity on the transient responses of the beam are investigated through numerical works.

Analytic study of a new conceptual propulsion device for ships

  • Muscia, Roberto;Sciuto, Giacomo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제2권2호
    • /
    • pp.75-86
    • /
    • 2010
  • In this work the possibility of obtaining a rectilinear motion of bodies partially or totally submerged without using propellers is evaluated. The system propulsion is based on a pair of counter rotating masses that generate the thrust. The fluid-body system has been schematized in order to carry out a very simple model. Using this model an evaluation of the body motion along a longitudinal direction was performed. The motion equations of the system were written and integrated. The external forces applied to the body depend on its velocity in relation to the water. These forces were obtained by fluid dynamic simulations. Regarding the mechanical configuration suggested, the results obtained show that a certain displacement of the body along a fixed direction is obtainable.

모바일 매니퓰레이터의 NMPC 기반 장애물 회피 및 전신 모션 플래닝 (NMPC-based Obstacle Avoidance and Whole-body Motion Planning for Mobile Manipulator)

  • 김선홍;사샤 아제이;스웨버스 얀;최영진
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.359-364
    • /
    • 2022
  • This study presents a nonlinear model predictive control (NMPC)-based obstacle avoidance and whole-body motion planning method for the mobile manipulators. For the whole-body motion control, the mobile manipulator with an omnidirectional mobile base was modeled as a nine degrees-of-freedom (DoFs) serial open chain with the PPR (base) plus 6R (arm) joints, and a swept sphere volume (SSV) was applied to define a convex hull for collision avoidance. The proposed receding horizon control scheme can generate a trajectory to track the end-effector pose while avoiding the self-collision and obstacle in the task space. The proposed method could be calculated using an interior-point (IP) method solver with 100[ms] sampling time and ten samples of horizon size, and the validation of the method was conducted in the environment of Pybullet simulation.