• 제목/요약/키워드: Body mechanics

검색결과 312건 처리시간 0.021초

종합병원에 근무하는 요통 간호사의 간호업무활동, 신체역학원리 및 직무 스트레스와의 관련성 (Relationships among Nursing Activities, the Use of Body Mechanics, and Job Stress in Nurses with Low Back Pain)

  • 정근자;서순림
    • 근관절건강학회지
    • /
    • 제20권2호
    • /
    • pp.141-150
    • /
    • 2013
  • Purpose: This study was conducted to identify relationships among nursing activities, the use of body mechanics, and job stress in nurses with low back pain. Methods: Participants were 225 nurses with low back pain working at an university hospital. The data were collected with self-reported questionnaires at March, 2012 and analyzed by descriptive statistics, t test, ANOVA, Scheff$\acute{e}$e test and multiple regression analyses. Results: There was significantly a higher degree of pain in subjects who working at special units including intensive care units and emergency room than at general wards. Low back pain was negatively correlated with the use of body mechanical principles while it was positively associated with the degree of job stress. According to results of multiple regression analyses, low back pain was significantly associated with the use of body mechanics and job stress in nurses working at general ward and special units including intensive care units and emergency room. Conclusion: The use of the principles of body mechanics and reducing job stress are important to prevent low back pain in nurses. It is necessary to develop and apply stress management and education program about the use of the principles of body mechanics.

Large displacement Lagrangian mechanics -Part I - Theory

  • Underhill, W.R.C.;Dokainish, M.A.;Oravas, G.Ae.
    • Structural Engineering and Mechanics
    • /
    • 제4권1호
    • /
    • pp.73-89
    • /
    • 1996
  • In Lagrangian mechanics, attention is directed at the body as it moves through space. The region occupied by the body is called a configuration. All body points are labelled by the position they would have if the body were to occupy a chosen reference configuration. The reference configuration can be regarded as an extra fictional copy where notes are kept. As the body moves and deforms, it is important to correctly observe the use of each configuration for computational purposes. The description of strain is particularly important. The present work establishes clearly the role of each configuration in total and in incremental forms. This work also details the differences between gradient and configurational calculus.

Large displacement Lagrangian mechanics -Part II - Equilibrium principles

  • Underhill, W.R.C.;Dokainish, M.A.;Oravas, G.Ae.
    • Structural Engineering and Mechanics
    • /
    • 제4권1호
    • /
    • pp.91-107
    • /
    • 1996
  • In Lagrangian mechanics, attention is directed at the body as it moves through space. Each body point is identified by the position it would have if the body were to occupy an arbitrary reference configuration. A result of this approach is that the analyst often describes the body by using quantities that may involve more than one configuration. This is particularly common in incremental calculations and in changes of the choice of reference configuration. With the rise of very powerful computing machinery, the popularity of numerical calculation has become great. Unfortunately, the mechanical theory has been evolved in a piecemeal fashion so that it has become a conglomeration of differently developed patches. The current work presents a unified development of the equilibrium principle. The starting point is the conservation of momentum. All details of configuration are shown. Finally, full dynamic and static forms are presented for total and incremental work.

마찰력이 개재된 강체역학에서 불일치의 해소 $-L\ddot{o}tstedt$의 미끄러지는 막대 (Resolving the Inconsistency of Rigid Body Frictional Mechanics $-L\ddot{o}tstedt$'s Sliding Rod)

  • 한인환
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.866-875
    • /
    • 1994
  • The problem of a rigid rod sliding on a rough horizontal surface in the plane is analyzed, which is commonly cited as an example of the inconsistency of rigid body frictional mechanics. The inconsistency is demonstrated by analyzing the normal reaction force at the contact point with the surface, and the concept of tangential collision is derived to resolve the inconsistency. Using the Poisson's hypothesis for the coefficient of restitution and Coulomb's law for the friction, the general methodology for solving the tangential collision is presented. The problem of the inconsistency generated in the sliding rod is completely resolved, building the concept of the tangential collision and adopting the theory of frictional impact. The result presented in this paper will obviate a generic obstacle to the development of simulation packages for planar rigid body mechanical systems with temporary contacts, and planning efficient motion strategies for robot manipulators.

Stress analysis with arbitrary body force by triple-reciprocity BEM

  • Ochiai, Y.;Kobayashi, T.
    • Structural Engineering and Mechanics
    • /
    • 제10권4호
    • /
    • pp.393-404
    • /
    • 2000
  • Linear stress analysis without body force can be easily solved by means of the boundary element method. Some cases of linear stress analysis with body force can also be solved without a domain integral. However, domain integrals are generally necessary to solve the linear stress problem with arbitrary body forces. This paper shows that the linear stress problem with arbitrary body forces can be solved approximately without a domain integral by the triple-reciprocity boundary element method. In this method, the distribution of arbitrary body forces can be interpolated by the integral equation. A new computer program is developed and applied to several problems.

Model test and numerical simulation on the bearing mechanism of tunnel-type anchorage

  • Li, Yujie;Luo, Rong;Zhang, Qihua;Xiao, Guoqiang;Zhou, Liming;Zhang, Yuting
    • Geomechanics and Engineering
    • /
    • 제12권1호
    • /
    • pp.139-160
    • /
    • 2017
  • The bearing mechanism of tunnel-type anchorage (TTA) for suspension bridges is studied. Model tests are conducted using different shapes of plug bodies, which are circular column shape and circular truncated cone shape. The results show that the plug body of the latter shape possesses much larger bearing capacity, namely 4.48 times at elastic deformation stage and 4.54 times at failure stage compared to the former shape. Numerical simulation is then conducted to understand the mechanical and structural responses of plug body and surrounding rock mass. The mechanical parameters of the surrounding rock mass are firstly back-analyzed based on the monitoring data. The calculation laws of deformation and equivalent plastic strain show that the numerical simulation results are rational and provide subsequent mechanism analysis with an established basis. Afterwards, the bearing mechanism of TTA is studied. It is concluded that the plug body of circular truncated cone shape is able to take advantage of the material strength of the surrounding rock mass, which greatly enhances its bearing capacity. The ultimate bearing capacity of TTA, therefore, is concluded to be determined by the material strength of surrounding rock mass. Finally, recommendations for TTA design are proposed and discussed.

주변 유체를 고려한 선박 충돌해석 기법 연구 (Ship Collision Analysis Technique considering Surrounding Water)

  • 이상갑;이정대
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.166-173
    • /
    • 2007
  • Collision analysis problems between ship to ship can be generally classified into the external mechanics(outer dynamics) and internal mechanics(inner dynamics). The former can be also dealt with the concept of fluid-structure interaction and the use of rigid body dynamic program, depending on the ways handling the hydrodynamic pressure due to surrounding water. In this study, full scale ship collision simulation was carried out, such as a DWT 75,000 ton striking ship collided at right angle to the middle of a DWT 150,000 struck ship with 10 knots velocity, coupling MCOL, a rigid body mechanics program for modeling the dynamics of ships, to hydrocode LS-DYNA. It could be confirmed that more suitable damage estimation would be performed in the case of the collision simulations with consideration of surrounding water through the comparison with the collision simulation results of fixed struck ships without it. Through this study, the opportunity could be obtained to establish a more effective ship collision simulation technique between ship to ship.

탄성체를 이용한 궤간가변 대차용 윤축시스템의 접촉력 해석 (Contact Mechanics of Variable-Gauge Wheeles With Flexible Body)

  • 이영주;배대성;김완구;장승호;한준석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.379-384
    • /
    • 2005
  • Research interest on flexible body dynamics, has been increased recently. The major application areas are the auto-mobile, train, and heavy machinery. This paper attempted the dynamic analysis for the variable-gauge wheelset with a flexible body, to better understand the dynamic characteristics of the variable-gauge wheelset. In order to achieve this goal, a 3D-Virtual Mock-up model was built. The tendency of the stress and deformation for the flexible lever was investigated through component mode synthesis, contact mechanics and flexible body dynamics. This study is a pioneering work for the development of Korean type variable-gauge wheelset.

  • PDF