• 제목/요약/키워드: Body Traits

검색결과 645건 처리시간 0.018초

Evaluation of accuracies of genomic predictions for body conformation traits in Korean Holstein

  • Md Azizul Haque;Mohammad Zahangir Alam;Asif Iqbal;Yun Mi Lee;Chang Gwon Dang;Jong Joo Kim
    • Animal Bioscience
    • /
    • 제37권4호
    • /
    • pp.555-566
    • /
    • 2024
  • Objective: This study aimed to assess the genetic parameters and accuracy of genomic predictions for twenty-four linear body conformation traits and overall conformation scores in Korean Holstein dairy cows. Methods: A dataset of 2,206 Korean Holsteins was collected, and genotyping was performed using the Illumina Bovine 50K single nucleotide polymorphism (SNP) chip. The traits investigated included body traits (stature, height at front end, chest width, body depth, angularity, body condition score, and locomotion), rump traits (rump angle, rump width, and loin strength), feet and leg traits (rear leg set, rear leg rear view, foot angle, heel depth, and bone quality), udder traits (udder depth, udder texture, udder support, fore udder attachment, front teat placement, front teat length, rear udder height, rear udder width, and rear teat placement), and overall conformation score. Accuracy of genomic predictions was assessed using the single-trait animal model genomic best linear unbiased prediction method implemented in the ASReml-SA v4.2 software. Results: Heritability estimates ranged from 0.10 to 0.50 for body traits, 0.21 to 0.35 for rump traits, 0.13 to 0.29 for feet and leg traits, and 0.05 to 0.46 for udder traits. Rump traits exhibited the highest average heritability (0.29), while feet and leg traits had the lowest estimates (0.21). Accuracy of genomic predictions varied among the twenty-four linear body conformation traits, ranging from 0.26 to 0.49. The heritability and prediction accuracy of genomic estimated breeding value (GEBV) for the overall conformation score were 0.45 and 0.46, respectively. The GEBVs for body conformation traits in Korean Holstein cows had low accuracy, falling below the 50% threshold. Conclusion: The limited response to selection for body conformation traits in Korean Holsteins may be attributed to both the low heritability of these traits and the lower accuracy estimates for GEBVs. Further research is needed to enhance the accuracy of GEBVs and improve the selection response for these traits.

Genetic parameters and inbreeding effects for production traits of Thai native chickens

  • Tongsiri, Siriporn;Jeyaruban, Gilbert M.;Hermesch, Susanne;van der Werf, Julius H.J.;Li, Li;Chormai, Theerachai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권7호
    • /
    • pp.930-938
    • /
    • 2019
  • Objective: Estimate genetic parameters, the rate of inbreeding, and the effect of inbreeding on growth and egg production traits of a Thai native chicken breed Lueng Hang Kao Kabinburi housed under intensive management under a tropical climate. Methods: Genetic parameters were estimated for weight measured at four weekly intervals from body weight at day 1 (BW1D) to body weight at 24 weeks (BW24) of age, as well as weight at first egg, age at first egg (AFE), egg weight at first egg, and total number of eggs (EN) produced during the first 17 weeks of lay using restricted maximum likelihood. Inbreeding depression was estimated using a linear regression of individual phenotype on inbreeding coefficient. Results: Direct additive genetic effect was significant for all traits. Maternal genetic effect and permanent environmental hen effects were significant for all early growth traits, expect for BW24. For BW24, maternal genetic effect was also significant. Permanent environmental hen effect was significant for AFE. Direct heritabilities ranged from 0.10 to 0.47 for growth traits and ranged from 0.15 to 0.16 for egg production traits. Early growth traits had high genetic correlations between them. The EN was lowly negatively correlated with other traits. The average rate of inbreeding for the population was 0.09% per year. Overall, the inbreeding had no effect on body weight traits, except for BW1D. An increase in inbreeding coefficient by 1% reduced BWID by 0.09 g (0.29% of the mean). Conclusion: Improvement in body weight gain can be achieved by selecting for early growth traits. Selection for higher body weight traits is expected to increase the weight of first egg. Due to low but unfavorable correlations with body weight traits, selection on EN needs to be combined with other traits via multi-trait index selection to improve body weight and EN simultaneously.

Genome-wide association study identifies 22 new loci for body dimension and body weight traits in a White Duroc×Erhualian F2 intercross population

  • Ji, Jiuxiu;Zhou, Lisheng;Guo, Yuanmei;Huang, Lusheng;Ma, Junwu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권8호
    • /
    • pp.1066-1073
    • /
    • 2017
  • Objective: Growth-related traits are important economic traits in the swine industry. However, the genetic mechanism of growth-related traits is little known. The aim of this study was to screen the candidate genes and molecular markers associated with body dimension and body weight traits in pigs. Methods: A genome-wide association study (GWAS) on body dimension and body weight traits was performed in a White $Duroc{\times}Erhualian$ $F_2$ intercross by the illumina PorcineSNP60K Beadchip. A mixed linear model was used to assess the association between single nucleotide polymorphisms (SNPs) and the phenotypes. Results: In total, 611 and 79 SNPs were identified significantly associated with body dimension traits and body weight respectively. All SNPs but 62 were located into 23 genomic regions (quantitative trait loci, QTLs) on 14 autosomal and X chromosomes in Sus scrofa Build 10.2 assembly. Out of the 23 QTLs with the suggestive significance level ($5{\times}10^{-4}$), three QTLs exceeded the genome-wide significance threshold ($1.15{\times}10^{-6}$). Except the one on Sus scrofa chromosome (SSC) 7 which was reported previously all the QTLs are novel. In addition, we identified 5 promising candidate genes, including cell division cycle 7 for abdominal circumference, pleiomorphic adenoma gene 1 and neuropeptides B/W receptor 1 for both body weight and cannon bone circumference on SSC4, phosphoenolpyruvate carboxykinase 1, and bone morphogenetic protein 7 for hip circumference on SSC17. Conclusion: The results have not only demonstrated a number of potential genes/loci associated with the growth-related traits in pigs, but also laid a foundation for studying the genes' role and further identifying causative variants underlying these loci.

Estimation of Additive and Dominance Genetic Variances in Line Breeding Swine

  • Ishida, T.;Kuroki, T.;Harada, H.;Fukuhara, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권1호
    • /
    • pp.1-6
    • /
    • 2001
  • Additive and dominance genetic variances were estimated for purebred Landrace selected with line breeding from 1989 to 1995 at Miyazaki Livestock Experiment Station, Kawaminami Branch. Ten body measurements, two reproductive traits and fifteen carcass traits were analyzed with single-trait mixed model analysis. The estimates of narrow-sense heritabilities by additive model were in the range of 0.07 to 0.46 for body measurements, 0.05 to 0.14 for reproductive traits, and 0.05 to 0.68 for carcass traits. The additive model tended to slightly overestimate the narrow-sense heritabilities as compared to the additive and dominance model. The proportion of the dominance variance to total genetic variance ranged from 0.11 to 0.91 for body measurements, 0.00 to 0.65 for reproductive traits, and 0.00 to 0.86 for carcass traits. Large differences among traits were found in the ratio of dominance to total genetic variance. These results suggested that dominance effect would affect the expression of all ten body measurements, one reproductive trait, and nine carcass traits. It is justified to consider the dominance effects in genetic evaluation of the selected lines for those traits.

Genetic correlation between live body measurements and beef cutability traits in Hanwoo steers

  • Choy, Yun Ho;Lee, Jae Goo;Mahboob, Alam;Choi, Tae Jeong;Rho, Seung Hee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권8호
    • /
    • pp.1074-1080
    • /
    • 2017
  • Objective: The growth, carcass and retail cut yield records on 1,428 Hanwoo steers obtained through progeny testing were analyzed in this study, and their heritability and genetic relationships among the traits were estimated using animal models. Methods: Two different models were compared in this study. Each model was fitted for different fixed class effects, date of slaughter for carcass traits and batch of progeny test live measurement traits, and a choice of covariates (carcass weight in Model 1 or backfat thickness in Model 2) for carcass traits. Results: The differences in body composition among individuals were deemed being unaffected by their age at slaughter, except for carcass weight and backfat thickness. Heritability estimates of body size measurements were 0.21 to 0.36. Heritability estimates of retail cut percentage were high (0.56 from Model 1 and 0.47 from Model 2). And the heritability estimates for loin muscle percentage were 0.36 from Model 1 and 0.42 from Model 2, which were high enough to consider direct selection on carcass cutability traits as effective. The genetic correlations between body size measurements and retail cut ratio (RCR) were close to zero. But, some negative genetic correlations were found with chest girths measured at yearling (Model 1) or at 24 months of age or with chest widths. Loin muscle ratio (LMR) was genetically negatively correlated with body weights or body size measurements, in general in Model 1. These relationships were low close to zero but positive in Model 2. Phenotypic correlation between cutability traits (RCR, LMR) and live body size measurements were moderate and negative in Model 1 while those in Model 2 were all close to zero. Conclusion: Therefore, the body weights or linear body measurements at an earlier age may not be the most desirable selection traits for exploitation of correlated responses to improve loin muscle or lean meat yield.

돼지 생체에서 부분육 형질의 추정 (Estimation of Carcass Cut Traits in Live Pigs)

  • 도창희
    • Journal of Animal Science and Technology
    • /
    • 제49권2호
    • /
    • pp.203-212
    • /
    • 2007
  • 돼지의 부분육의 중량과 수율의 개량을 위하여 생체에서 이를 측정할 수 있는 수단이 필요하다. 4개의 교잡 계통돈 돼지 432두에 대하여 시기별 생체 측정치와 도축자료를 조사하였다. 생체중 및 도체중 그리고 부분육의 중량은 도축일령에 의해 영향을 거의 모두 받고 있지만 수율에 있어서는 삼겹살과 목심에만 유의성있게 영향하는 것으로 나타났다. 부분육의 형질과 시기별 생체 측정치간의 상관 조사에서 대부분의 체측정치에서 검정 종료시의 측정치가 다른 시기의 측정치보다 상관이 높게 나타났고, 부분육 형질의 예측을 위한 회귀식에서도 검정 개시와 출하시의 체측정치 보다 검정 종료시 체측정치를 이용하였을 때 결정계수가 모든 부분육의 형질에서 높아 가장 정확하게 추정하였다. 부분육 형질을 평균 출하일령으로 보정한 뒤, 검정 종료시 체측정치의 3차 다항회귀 식에 의한 부분육 형질의 예측에서 중량과 수율의 결정계수가 각각 0.59~0.68과 0.33~0.43의 범위를 보여주어 이를 돼지의 부분육 형질의 개량을 위해 활용하면 국내 선호부위가 우수한 한국형 종돈의 생산이 기대된다.

Effects of Maternal Nutrition during Pregnancy on the Body Weight, Muscle Fiber Number, Carcass Traits, and Pork Quality Traits of Offspring

  • Choe, J.H.;Choi, Y.M.;Ryu, Y.C.;Lee, S.H.;Kim, B.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권7호
    • /
    • pp.965-971
    • /
    • 2010
  • The purpose of the current study was to examine the influence of different maternal nutrition treatments during pregnancy on body weight, muscle fiber number, carcass traits, and pork quality traits of offspring. A total of 18 crossbred sows (Landrace${\times}$Yorkshire${\times}$Duroc) were randomly assigned to one of three nutritional treatment groups; control, high energy, and high protein. The control group was fed a standard diet, the high energy group was fed a diet that contained 30% increased metabolizable energy, and the high protein group was fed a diet that contained 30% increased limiting amino acids compared to the control. The sows in each group were fed equal quantities of each diet (1.9 kg/d) for the entire gestational period. A total of 36 piglets from each sow were used to evaluate changes in body weight, muscle fiber number in the longissimus dorsi muscle at birth, carcass traits, and pork quality traits. Birth weight of offspring born to sows in the high energy diet group was significantly higher compared to the high protein diet group (p<0.05). However, body weight of offspring after birth was not significantly different between the groups. Muscle fiber number for the longissimus dorsi muscle at birth was not significantly different between the groups. In addition, there were no significant differences in carcass traits or pork quality traits between offspring born to sows in the control group and those born to sows that received high energy or high protein diets during pregnancy. Based on these results, it appears that maternal nutrition treatment during pregnancy, regardless of whether it is with high energy or high protein diets, does not have a significant effect on body weight, muscle fiber number at birth, carcass traits, or pork quality traits.

현대 패션 일러스트레이션에 나타난 몸 표현에 관한 연구 (Expression of Body in Contemporary Fashion Illustrations)

  • 박은경
    • 복식
    • /
    • 제59권5호
    • /
    • pp.53-70
    • /
    • 2009
  • The purpose of this study is to analyze the expressional traits and meanings of body images in contemporary fashion illustration, based on postmodern body theories and body images in postmodern art. For achieving the purpose, this study performed related research works and undertook a demonstrative analysis of fashion illustrations. The results are as follows : The postmodern body theories not only opposed, deconstructed the traditional concepts and norms of body, but also revealed the suppressed facts of it. Also they composed the new concepts of body. The expressional traits of body images in postmodern art and contemporary fashion illustration were categorized as realistically presented body, distorted/deformed body, fragmented body, abject body, post-gendered body and absent body. Through these traits, the meanings of defiance to authority, revelation of reality, new creation were expressed. In conclusion, the various body images in contemporary fashion illustration reflect open concepts for human beings and give new aesthetic experiences.

Variance Component Quantitative Trait Locus Analysis for Body Weight Traits in Purebred Korean Native Chicken

  • Cahyadi, Muhammad;Park, Hee-Bok;Seo, Dong-Won;Jin, Shil;Choi, Nuri;Heo, Kang-Nyeong;Kang, Bo-Seok;Jo, Cheorun;Lee, Jun-Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권1호
    • /
    • pp.43-50
    • /
    • 2016
  • Quantitative trait locus (QTL) is a particular region of the genome containing one or more genes associated with economically important quantitative traits. This study was conducted to identify QTL regions for body weight and growth traits in purebred Korean native chicken (KNC). F1 samples (n = 595) were genotyped using 127 microsatellite markers and 8 single nucleotide polymorphisms that covered 2,616.1 centi Morgan (cM) of map length for 26 autosomal linkage groups. Body weight traits were measured every 2 weeks from hatch to 20 weeks of age. Weight of half carcass was also collected together with growth rate. A multipoint variance component linkage approach was used to identify QTLs for the body weight traits. Two significant QTLs for growth were identified on chicken chromosome 3 (GGA3) for growth 16 to18 weeks (logarithm of the odds [LOD] = 3.24, Nominal p value = 0.0001) and GGA4 for growth 6 to 8 weeks (LOD = 2.88, Nominal p value = 0.0003). Additionally, one significant QTL and three suggestive QTLs were detected for body weight traits in KNC; significant QTL for body weight at 4 weeks (LOD = 2.52, nominal p value = 0.0007) and suggestive QTL for 8 weeks (LOD = 1.96, Nominal p value = 0.0027) were detected on GGA4; QTLs were also detected for two different body weight traits: body weight at 16 weeks on GGA3 and body weight at 18 weeks on GGA19. Additionally, two suggestive QTLs for carcass weight were detected at 0 and 70 cM on GGA19. In conclusion, the current study identified several significant and suggestive QTLs that affect growth related traits in a unique resource pedigree in purebred KNC. This information will contribute to improving the body weight traits in native chicken breeds, especially for the Asian native chicken breeds.

Performance of Naked Neck versus Normally Feathered Coloured Broilers for Growth, Carcass Traits and Blood Biochemical Parameters in Tropical Climate

  • Patra, B.N.;Bais, R.K.S.;Prasad, R.B.;Singh, B.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권12호
    • /
    • pp.1776-1783
    • /
    • 2002
  • A population segregating for the naked neck (Na) gene was used to evaluate its effect on fast growing broilers at heat stress. An experimental stock comparable to those of modern broilers was established by backcrossing to colour synthetic male and female lines. Matings between heterozygous (Na/na) males and females produced normally feathered (na/na), heterozygous (Na/na) and homozygous (Na/Na) chicks for the present study. Day old to seven week old coloured broilers of three genotypes viz. normally feathered (na/na), heterozygous naked neck (Na/na) and homozygous naked neck (Na/Na) were compared for heat dissipation, growth performance, body conformation traits, blood biochemical parameters and carcass traits in tropical climate. In hot climate, naked neck broilers had significantly less body temperature and better heat dissipation capabilities as compared to normal broilers. The naked neck broilers had significantly higher body weight and better feed conversion ratio than na/na broilers. The Na/Na or Na/na broilers exhibited higher giblet yield, blood loss and lower feather mass compared to na/na broilers. The results indicated that the reduction in feather coverage in Na/Na and Na/na broilers facilitates better heat dissipation with lower body temperature, more body weight gain, better FCR and carcass traits compared to normal broilers.