Browse > Article
http://dx.doi.org/10.5713/ajas.15.0193

Variance Component Quantitative Trait Locus Analysis for Body Weight Traits in Purebred Korean Native Chicken  

Cahyadi, Muhammad (Division of Animal and Dairy Science, Chungnam National University)
Park, Hee-Bok (Division of Animal and Dairy Science, Chungnam National University)
Seo, Dong-Won (Division of Animal and Dairy Science, Chungnam National University)
Jin, Shil (Division of Animal and Dairy Science, Chungnam National University)
Choi, Nuri (Division of Animal and Dairy Science, Chungnam National University)
Heo, Kang-Nyeong (Poultry Science Division, National Institute of Animal Science, RDA)
Kang, Bo-Seok (Poultry Science Division, National Institute of Animal Science, RDA)
Jo, Cheorun (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University)
Lee, Jun-Heon (Division of Animal and Dairy Science, Chungnam National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.1, 2016 , pp. 43-50 More about this Journal
Abstract
Quantitative trait locus (QTL) is a particular region of the genome containing one or more genes associated with economically important quantitative traits. This study was conducted to identify QTL regions for body weight and growth traits in purebred Korean native chicken (KNC). F1 samples (n = 595) were genotyped using 127 microsatellite markers and 8 single nucleotide polymorphisms that covered 2,616.1 centi Morgan (cM) of map length for 26 autosomal linkage groups. Body weight traits were measured every 2 weeks from hatch to 20 weeks of age. Weight of half carcass was also collected together with growth rate. A multipoint variance component linkage approach was used to identify QTLs for the body weight traits. Two significant QTLs for growth were identified on chicken chromosome 3 (GGA3) for growth 16 to18 weeks (logarithm of the odds [LOD] = 3.24, Nominal p value = 0.0001) and GGA4 for growth 6 to 8 weeks (LOD = 2.88, Nominal p value = 0.0003). Additionally, one significant QTL and three suggestive QTLs were detected for body weight traits in KNC; significant QTL for body weight at 4 weeks (LOD = 2.52, nominal p value = 0.0007) and suggestive QTL for 8 weeks (LOD = 1.96, Nominal p value = 0.0027) were detected on GGA4; QTLs were also detected for two different body weight traits: body weight at 16 weeks on GGA3 and body weight at 18 weeks on GGA19. Additionally, two suggestive QTLs for carcass weight were detected at 0 and 70 cM on GGA19. In conclusion, the current study identified several significant and suggestive QTLs that affect growth related traits in a unique resource pedigree in purebred KNC. This information will contribute to improving the body weight traits in native chicken breeds, especially for the Asian native chicken breeds.
Keywords
Body Weight; Growth; Quantitative Trait Locus; Purebred; Korean Native Chicken;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Abasht, B. and S. J. Lamont. 2007. Genome-wide association analysis reveals cryptic alleles as an important factor in heterosis for fatness in chicken F2 population. Anim. Genet. 38:491-498.   DOI
2 Almasy, L. and J. Blangero. 2010. Variance Component Methods for Analysis of Complex Phenotypes. Cold Spring Harb. Protoc. http:/dx.doi.org/10.1101/pdb.top77   DOI
3 Andersson, L. and M. Georges. 2004. Domestic-animal genomics: Deciphering the genetics of complex traits. Nat. Rev. Genet. 5:202-212.   DOI
4 Atzmon, G., S. Blum, M. Feldman, A. Cahaner, U. Lavi, and J. Hillel. 2008. QTLs detected in a multigenerational resource chicken population. J. Hered. 99:528-538.   DOI
5 Cahyadi, M., C. Jo, and J. H. Lee. 2014. Quantitative trait loci and candidate genes for the economic traits in meat-type chicken. Worlds Poult. Sci. J. 70:329-342.   DOI
6 Cahyadi, M., D. W. Seo, S. Jin, N. Choi, H. B. Park, K. N. Heo, B. S. Kang, C. Jo, and J. H. Lee. 2013. Association of SNPs in ODC and PRDM16 with Body Weight Traits in Korean Native Chicken. Korean J. Poult. Sci. 40:157-162.   DOI
7 Cho, E. S., W. H. Chung, J. W. Choi, H. J. Jang, M. N. Park, N. Kim, T. H. Kim, and K. T. Lee. 2014. Genome-wide copy number variation in a Korean native chicken breed. Korean J. Poult. Sci. 41:305-311.   DOI
8 Groenen, M. A., H. H. Cheng, N. Bumstead, B. F. Benkel, W. E. Briles, T. Burke, D. W. Burt, L. B. Crittenden, J. Dodgson, J. Hillel, S. Lamont, A. P. de Leon, M. Soller, H. Takahashi, and A. Vignal. 2000. A consensus linkage map of the chicken genome. Genome Res. 10:137-147.
9 Hinsby, A. M., J. V. Olsen, and M. Mann. 2004. Tyrosine phosphoproteomics of fibroblast growth factor signaling: A role for insulin receptor substrate-4. J. Biol. Chem. 279:46438-46447.   DOI
10 Ikeobi, C. O. N., J. A. Woolliams, D. R. Morrice, A. Law, D. Windsor, D. W. Burt, and P. M. Hocking. 2004. Quantitative trait loci for meat yield and muscle distribution in a broiler layer cross. Livest. Prod. Sci. 87:143-151.   DOI
11 Jacobsson, L., H. B. Park, P. Wahlberg, R. Fredriksson, M. Perez- Enciso, P. B. Siegel, and L. Andersson. 2005. Many QTLs with minor additive effects are associated with a large difference in growth between two selection lines in chickens. Genet. Res. 86:115-125.   DOI
12 Jeon, H. J., J. H. Choe, Y. K. Jung, Z. A. Kruk, D. G. Lim, and C. Jo. 2010. Comparison of the chemical composition, textural characteristics, and sensory properties of North and South Korean native chickens and commercial broilers. Korean J. Food Sci. Ani. Resour. 30:171-178.   DOI
13 Jin, S., H. B. Park, D. W. Seo, M. Cahyadi, N. R. Choi, K. N. Heo, C. Jo, and J. H. Lee. 2014. Association of MC1R genotypes with shank color traits in Korean native chicken. Livest. Sci. 170:1-7.   DOI
14 Lander, E. S. and D. Botstein. 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185-199.
15 Sadagurski, M., X. C. Dong, M. G. Myers Jr., and M. F. White. 2014. IRS2 and IRS4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis. Mol. Metab. 3:55-63.   DOI
16 Liu, R., Y. Sun, G. Zhao, F. Wang, D. Wu, M. Zheng, J. Chen, L. Zhang, Y. Hu, and J. Wen. 2013. Genome-wide association study identifies Loci and candidate genes for body composition and meat quality traits in Beijing-You chickens. PLoS One. 8:e61172.   DOI
17 Piepho, H. P. 2001. A quick method for computing approximate thresholds for quantitative trait loci detection. Genetics 157:425-432.
18 Podisi, B. K., S. A. Knott, D. W. Burt, and P. M. Hocking. 2013. Comparative analysis of quantitative trait loci for body weight, growth rate and growth curve parameters from 3 to 72 weeks of age in female chickens of a broiler-layer cross. BMC Genet. 14:22.
19 Schreiweis, M. A., P. Y. Hester, and D. E. Moody. 2005. Identification of quantitative trait loci associated with bone traits and body weight in an F2 resource population of chickens. Genet. Sel. Evol. 37:677-698.   DOI
20 Seo, D. W., M. R. Hoque, N. R. Choi, H. Sultana, H. B. Park, K. N. Heo, B. S. Kang, H. T. Lim, S. H. Lee, C. Jo, and J. H. Lee. 2013. Discrimination of Korean native chicken lines using fifteen selected microsatellite markers. Asian Australas. J. Anim. Sci. 26:316-322.   DOI
21 Seo, D. W., J. D. Oh, S. Jin, K. D. Song, H. B. Park, K. N. Heo, Y. Shin, M. Jung, J. Park, C. Jo, H. K. Lee, and J. H. Lee. 2015a. Single nucleotide polymorphism analysis of Korean native chickens using next generation sequencing data. Mol. Biol. Rep. 42:471-477.   DOI
22 Tsudzuki, M., S. Onitsuka, R. Akiyama, M. Iwamizu, N. Goto, M. Nishibori, H. Takahashi, and A. Ishikawa. 2007. Identification of quantitative trait loci affecting shank length, body weight and carcass weight from the Japanese cockfighting chicken breed, Oh-Shamo Japanese Large Game. Cytogenet. Genome Res. 117:288-295.   DOI
23 Seo, D. W., H. B. Park, N. R. Choi, S. Jin, C. K. Yoo, H. Sultana, K. N. Heo, C. Jo, and J. H. Lee. 2015b. Construction of genetic linkage map using microsatellite and SNP markers in Korean native chicken. Korean J. Poult. Sci. 42:77-86.   DOI
24 Sheng, Z., M. E. Pettersson, X. Hu, C. Luo, H. Qu, D. Shu, X. Shen, O. Carlborg, and N. Li. 2013. Genetic dissection of growth traits in a Chinese indigenousxcommercial broiler chicken cross. BMC Genomics. 14:151.   DOI
25 Tercic, D., A. Holcman, P. Dovc, D. R. Morrice, D. W. Burt, P. M. Hocking, and S. Horvat. 2009. Identification of chromosomal regions associated with growth and carcass traits in an F (3) full sib intercross line originating from a cross of chicken lines divergently selected on body weight. Anim. Genet. 40:743-748.   DOI
26 Uemoto, Y., S. Sato, T. Ohtake, S. Sato, Y. Okumura, and E. Kobayashi. 2011. Ornithine decarboxylase gene is a positional candidate gene affecting growth and carcass traits in F2 intercross chickens. Poult. Sci. 90:35-41.   DOI
27 Vignal, A., D. Milan, M. SanCristobal, and A. Eggen. 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 34:275-305.   DOI
28 Wang, S. Z., X. X. Hu, Z. P. Wang, X. C. Li, Q. G. Wang, Y. X. Wang, Z. Q. Tang, and H. Li. 2012. Quantitative trait loci associated with body weight and abdominal fat traits on chicken chromosomes 3, 5 and 7. Genet. Mol. Res. 11:956-965.   DOI
29 Zhang, H., S. H. Liu, Q. Zhang, Y. D. Zhang, S. Z. Wang, Q. G. Wang, Y. X. Wang, Z. Q. Tang, and H. Li. 2011. Fine-mapping of quantitative trait loci for body weight and bone traits and positional cloning of the RB1 gene in chicken. J. Anim. Breed. Genet. 128:366-375.   DOI
30 Wahlberg, P., O. Carlborg, M. Foglio, X. Tordoir, A. C. Syvanen, M. Lathrop, I. G. Gut, P. B. Siegel, and L. Andersson. 2009. Genetic analysis of an F2 intercross between two chicken lines divergently selected for body-weight. BMC Genomics 10:248-262.   DOI