• Title/Summary/Keyword: Body Sensor

Search Result 930, Processing Time 0.026 seconds

Development of living body information and behavior monitoring system for nursing person

  • Ichiki, Ai;Sakamoto, Hidetoshi;Ohbuchi, Yoshifumi
    • Journal of Engineering Education Research
    • /
    • v.17 no.4
    • /
    • pp.15-20
    • /
    • 2014
  • The non-contact easy detecting system of nursing person's body vital information and their behaviors monitoring system are developed, which consist of "Kinect" sensor and thermography camera. The "Kinect" sensor can catch the body contour and the body moving behavior, and output their imaging data realtime. The thermography camera can detect respiration state and body temperature, etc. In this study, the practicability of this system was verified.

WBAN LI Protocol for Improving Lifetime of Implant Sensor in Body (WBAN에서 신체 내부 센서의 라이프타임 향상을 위한 LI 프로토콜)

  • Park, Jinchul;Lee, Jongkyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.18-25
    • /
    • 2014
  • A implanted sensor's error probability is more likely to external sensor's error probability by biological characteristic in WBAN. In this paper, we present method that external sensor transmits frame instead of doing implanted sensor's retransmission for improving lifetime of implanted sensors in WBAN. The proposed method, LI(Lifetime Increment) protocol is to add external sensor's id in transmission data frame of a implanted sensor. When the retransmission is required, external sensor that have to registered id in data frame retransmits frame instead of implanted sensors' retransmission. The comparison result shows that the proposed protocol reduces power consumption and improves life time.

A Study on Taekwondo Training System using Hybrid Sensing Technique

  • Kwon, Doo Young
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.12
    • /
    • pp.1439-1445
    • /
    • 2013
  • We present a Taekwondo training system using a hybrid sensing technique of a body sensor and a visual sensor. Using a body sensor (accelerometer), rotational and inertial motion data are captured which are important for Taekwondo motion detection and evaluation. A visual sensor (camera) captures and records the sequential images of the performance. Motion chunk is proposed to structuralize Taekwondo motions and design HMM (Hidden Markov Model) for motion recognition. Trainees can evaluates their trial motions numerically by computing the distance to the standard motion performed by a trainer. For motion training video, the real-time video images captured by a camera is overlayed with a visualized body sensor data so that users can see how the rotational and inertial motion data flow.

Impaction of a continuous glucose monitoring sensor

  • Park, Kyong Chan;Choi, Hwan Jun
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.392-394
    • /
    • 2021
  • A 33-year-old man presented to the plastic surgery department for foreign body removal 1 month after the insertion of a continuous glucose monitoring (CGM) sensor (Dexcom G5) in the left upper arm. The patient had used the CGM system for 5 years, and the insertion was done in the usual manner. The entire sensor wire was visible on simple radiography and ultrasonography. In the operating room, and the sensor wire was identified in the intermuscular septum and removed. No foreign body reaction or inflammatory signs were found around the CGM, and the extracted wire measured 2.5 cm. Thus, it was assumed that the whole sensor wire was detached from the transmitter, not fractured. No remnant foreign body was observed on follow-up simple radiography.

High-Speed CMOS Binary Image Sensor with Gate/Body-Tied PMOSFET-Type Photodetector

  • Choi, Byoung-Soo;Jo, Sung-Hyun;Bae, Myunghan;Kim, Jeongyeob;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.332-336
    • /
    • 2014
  • In this paper, we propose a complementary metal oxide semiconductor (CMOS) binary image sensor with a gate/body-tied (GBT) PMOSFET-type photodetector for high-speed operation. The GBT photodetector of an active pixel sensor (APS) consists of a floating gate ($n^+$-polysilicon) tied to the body (n-well) of the PMOSFET. The p-n junction photodiode that is used in a conventional APS has a good dynamic range but low photosensitivity. On the other hand, a high-gain GBT photodetector has a high level of photosensitivity but a narrow dynamic range. In addition, the pixel size of the GBT photodetector APS is less than that of the conventional photodiode APS because of its use of a PMOSFET-type photodetector, enabling increased image resolution. A CMOS binary image sensor can be designed with simple circuits, as a complex analog to digital converter (ADC) is not required for binary processing. Because of this feature, the binary image sensor has low power consumption and high speed, with the ability to switch back and forth between a binary mode and an analog mode. The proposed CMOS binary image sensor was simulated and designed using a standard CMOS $0.18{\mu}m$ process.

A Work-related Musculoskeletal Disorder Risk Assessment Platform using Smart Sensor (스마트센서를 활용한 근골격계 질환 위험 평가 플랫폼)

  • Loh, Byoung Gook
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.93-99
    • /
    • 2015
  • Economic burden of work-related musculoskeletal disorder(WMDs) is increasing. Known causes of WMDs include improper posture, repetition, load, and temperature of workplace. Among them, improper postures play an important role. A smart sensor called SensorTag is employed to estimate the trunk postures including flexion-extension, lateral bend, and the trunk rotational speeds. Measuring gravitational acceleration vector in the smart sensor along the tri-orthogonal axes offers an orientation of the object with the smart sensor attached to. The smart sensor is light in weight and has small form factor, making it an ideal wearable sensor for body posture measurement. Measured data from the smart senor is wirelessly transferred for analysis to a smartphone which has enough computing power, data storage and internet-connectivity, removing need for additional hardware for data post-processing. Based on the estimated body postures, WMDs risks can be conviently gauged by using existing WMDs risk assesment methods such as OWAS, RULA, REBA, etc.

Simulation of High-Speed and Low-Power CMOS Binary Image Sensor Based on Gate/Body-Tied PMOSFET-Type Photodetector Using Double-Tail Comparator

  • Kwen, Hyeunwoo;Kim, Sang-Hwan;Lee, Jimin;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.82-88
    • /
    • 2020
  • In this paper, we propose a complementary metal-oxide semiconductor (CMOS) binary image sensor with a gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector using a double-tail comparator for high-speed and low-power operations. The GBT photodetector is based on a PMOSFET tied with a floating gate (n+ polysilicon) and a body that amplifies the photocurrent generated by incident light. A double-tail comparator compares an input signal with a reference voltage and returns the output signal as either 0 or 1. The signal processing speed and power consumption of a double-tail comparator are superior over those of conventional comparator. Further, the use of a double-sampling circuit reduces the standard deviation of the output voltages. Therefore, the proposed CMOS binary image sensor using a double-tail comparator might have advantages, such as low power consumption and high signal processing speed. The proposed CMOS binary image sensor is designed and simulated using the standard 0.18 ㎛ CMOS process.

Wearable sensor network system for walking assistance

  • Moromugi, Shunji;Owatari, Hiroshi;Fukuda, Yoshio;Kim, Seok-Hwan;Tanaka, Motohiro;Ishimatsu, Takakazu;Tanaka, Takayuki;Feng, Maria Q.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2138-2142
    • /
    • 2005
  • A wearable sensor system is proposed as a man-machine interface to control a device for walking assistance. The sensor system is composed of small sensors to detect the information about the user's body motion such as the activity level of skeletal muscles and the acceleration of each body parts. Each sensor includes a microcomputer and all the sensors are connected into a network by using the serial communication function of the microcomputer. The whole network is integrated into a belt made of soft fabric, thus, users can put on/off very easily. The sensor system is very reliable because of its decentralized network configuration. The body information obtained from the sensor system is used for controlling the assisting device to achieve a comfortable and an effective walking training.

  • PDF

Decision method for rule-based physical activity status using rough sets (러프집합을 이용한 규칙기반 신체활동상태 결정방법)

  • Lee, Young-Dong;Son, Chang-Sik;Chung, Wan-Young;Park, Hee-Joon;Kim, Yoon-Nyun
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.432-440
    • /
    • 2009
  • This paper presents an accelerometer based system for physical activity decision that are capable of recognizing three different types of physical activities, i.e., standing, walking and running, using by rough sets. To collect physical acceleration data, we developed the body sensor node which consists of two custom boards for physical activity monitoring applications, a wireless sensor node and an accelerometer sensor module. The physical activity decision is based on the acceleration data collected from body sensor node attached on the user's chest. We proposed a method to classify physical activities using rough sets which can be generated rules as attributes of the preprocessed data and by constructing a new decision table, rules reduction. Our experimental results have successfully validated that performance of the rule patterns after removing the redundant attribute values are better and exactly same compare with before.

A Study of BioSignal Analysis for Physical Activity of Wu-Shu Training (우슈 수련자의 신체활동에 따른 생체신호 분석에 관한 연구)

  • Kim Chang-Mo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.230-237
    • /
    • 2005
  • In this paper, we are suggested a method that's a major topics in sports medicine. It is disease control, control and management of chronic degenerative disease, and promotion of health. We are analyze physical activity to scientific and quantitative a trainee at Wu-Shu gymnasium, for a suggested method. We are measured a quantity of physical activity by SenseWear-PRO2-Armband which develop body-media company. Armband include to skin temperature sensor, near-body temperature sensor, accelerometer, heat flux sensor, galvanic skin response sensor. Acquired data was recorded to storage in Armband. We are analyzed using InnerView Wearer Software in the Stored data to skin temperature, calorie expenditure, quantity of physical activity. The result of this analyzed, we are know that a man of long-term exercise expenditure energy at short time and if liveliness of physical activity was Increase in expenditure energy with increase skin temperature. Also, we are know that the heat flux after increase expenditure energy with increase skin temperature. And, know that GSR was not affected a factors that physical activity, expenditure energy, increase skin temperature, and others.

  • PDF