• Title/Summary/Keyword: Body Induced Current

Search Result 150, Processing Time 0.022 seconds

Parameter Extraction and Device Characteristics of Submicron MOSFET'S(II) -Characteristics of fabricated devices- (서브마이크론 MOSFET의 파라메터 추출 및 소자 특성 II -제작된 소자의 특성-)

  • 서용진;장의구
    • Electrical & Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.225-230
    • /
    • 1994
  • In this paper, we have fabricated short channel MOSFETs with these parameters to verify the validity of process parameters extraction by DTC method. The experimental results of fabricated short channel devices according to the optimal process parameters demonstrate good device characteristics such as good drain current-voltage characteristics, low body effects and threshold voltage of$\leq$+-.1.0V, high punch through and breakdown voltage of$\leq$12V, low subthreshold swing(S.S) values of$\leq$105mV/decade.

  • PDF

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.4
    • /
    • pp.115-130
    • /
    • 2003
  • Idiopathic Parkinson's disease (IPD) represents a common neurodegenerative disorder. While epidemiological studies have suggested a number of risk factors including age, gender, race, and inherited disorder, the cumulative evidence supports the view that environmental or occupational exposure to certain chemicals may contribute to the initiation and progress of Parkinsonism. More recently, clinical and laboratory investigations have led to the theory that dysregulation of iron, an essential metal to body function, may underlie IPD by initiating free radical reaction, diminishing the mitochondrial energy production, and provoking the oxidative cytotoxicity. The participation of iron in neuronal cell death is especially intriguing in that iron acquisition and regulation in brain are highly conservative and thus vulnerable to interference from other metals that bear the similar chemical reactivity. Manganese neurotoxicity, induced possibly by altering iron homeostasis, is such an example. In fact, the current interest in manganese neurotoxicology stems from two primary concerns: its clinical symptoms that resemble Parkinson's disease and its increased use as an antiknock agent to replace lead in gasoline. This article will commence with addressing the current understanding of iron-associated neurodegenerative damage. The major focus will then be devoted to the mechanism whereby manganese alters iron homeostasis in brain.

  • PDF

A Study on the Magnetic Fluid driven by Electromagnetic Force (전자기력에 의한 자성유체의 구동에 관한 연구)

  • Nam Seong-won
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.31-38
    • /
    • 1999
  • Numerical analysis is conducted on the deformation of free surface of magnetic fluid. Steady magnetic fields are induced by a circular current loop. Governing equations of magnetic fields are solved by using the concept of vector potential. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. The deformations of free surface of magnetic fluid are qualitatively clarified. And, the patterns of steady non-uniform magnetic fields induced by a circular current loop are quantitatively presented. The shape of free surface attained by the polar fluid approach is rougher and higher than that attained by the quasi-steady approach.

  • PDF

The Effect of Current and Temperature of a Reservoir by the Simulation of Dam Outflow (댐 방류조건에 따른 저수지 유속과 수온 영향)

  • Yu, Soon-ju;Ha, Sung-ryong;Jung, Dong-il
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1060-1067
    • /
    • 2006
  • Water quality in the Daecheong reservoir has been deteriorated by algal bloom due to nutrient supply from the upstream of the Daecheong reservoir after heavy rainfall. Algal bloom is propagated from eutrophicated tributary into the main body of the reservoir according to the hydrological conditions. This study is aimed to estimate the water current and temperature effect by the simulation of dam spill flow control using water quality model, CE-QUAL-W2 in 2003. Water current was resulted in nutrient transport from upstream of main reservoir and nutrients were delivered up to downstream by fast water velocity. Algal blooms occurred in stagnate zone of reservoir downstream as the current of downstream was retarded according to dam outflow control. Consequently water balance in stagnate zone triggered a rise of water temperature in summer. It affected algal bloom in the embayment of the reservoir. The simulation result by outflow control scenarios showed that spill flow augmentation induced in water body instability of stagnate zone so that water temperature declined. It could be suggested that outflow control minimize algal bloom in the downstream in the flooding season as long as water elevation level is maintained properly.

A Case of Qigong-Induced Mental Disorder: a Differential Diagnosis

  • Kwon, Yongju;Cho, Seung-Hun
    • Journal of Oriental Neuropsychiatry
    • /
    • v.24 no.3
    • /
    • pp.251-256
    • /
    • 2013
  • Objectives : Qi gong is generally considered to be safe in most people when learned from a qualified instructor. But abnormal psychosomatic responses or mental disorder may be induced when Qigong is practiced inappropriately, excessively, or when practiced unguided in predisposed individuals. Here we reported a case of Qigong-induced Mental Disorder (QIMD). A woman who had not had a psychiatric disease, by chance started Qigong practice, and felt raising- Qisymptoms, including headache. Methods : We identified the unique characteristics of QIMD and discusses differences with other diseases such as somatoform disorder and schizophrenia. Results : To conclude, QIMD does not come under current somatoform disorder subtypes and schizophrenia. Conclusions : It has distinct characters that occurring after Qigong practice, symptoms of upper body, feeling that something to rise up.

Analysis of Shielding Characteristics for Induction Phenomenon Attenuation of Large Capacity Wireless Power Transmission Environment (대용량 무선전력전송 환경 유도현상 감쇄를 위한 차폐 특성 분석)

  • Chae, Dong-Ju;Kim, Young-Seok;Jung, Jin-Soo;Lim, Hyun-Sung;Cho, Sung-Koo;Hong, Seong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1844-1851
    • /
    • 2017
  • As the capacity of the wireless power transmission increases, a higher supply current which may induce current in nearby conductive parts requires. Induced current may affect electric shock to the human body and malfunction of the electrical equipment. In order to prevent such induced phenomena as a risk factor, shielding is required between the source of the wireless power transmission and the conductive parts. The resonance frequency for the large capacity wireless power transmission has the wavelength of several hundred meters, so most environments are included in the near-field area. By wave impedance, the electric field has higher density in the near-field area and needs to be analyze for protecting. For this purpose, it is necessary to select a substance having a larger electric conductivity and optimized shielding structure. In this paper, an aluminum base shielding structure was presented to conduct experiments on thickness, position, and heat dissipation. In the 35 kW, 60 kHz environments, the optimized 5T Al base shielding structure attenuates the induced current to 43 %.

Design of 8 Channel Insertional pTx Array Coil for 3T Body Imaging (8 채널 삽입형 3T Body pTx Array 코일 설계)

  • Kim, Young Beom;Ryu, Yeunchul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.546-550
    • /
    • 2014
  • In this research, we report all the elements are placed in the space above the patient table as a transmit coil to give optimized B1+ field for the body object. Through the simulations, we compared upper-and-lower parts combined 8 channel Tx array to upper only 8 channel Tx array and showed the utilities of B1+ shimming in multi-channel Tx body imaging at 3T. Half-cylinder shaped upper array shows weak B1+ field area around back of patient without B1+ shimming. After B1+ shimming, highly induced SAR places occurred in the arm region due to the close distance to the both end elements which were driven by very high RF current to enhance B1+ in back area. The proposed upper and lower combined array provides an enhanced homogeneous B1+ field in large ROI imaging as a result of shimming over the body size phantom. Through this research we proved the usefulness of the proposed insertional upper and lower parts combined transmit array for 3T body imaging.

Magnetic Field Reduction Characteristics of Shielding Wear Materials for Workers Using AC Arc Welder (교류 아크용접기를 사용하는 작업자의 차폐복 재질에 따른 자계저감 특성검토)

  • Park, Jun-Hyeong;Min, Suk-Won;Lee, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1265-1271
    • /
    • 2010
  • Power cable of an AC arc welder can surround a body of worker at the moment of welding. Applying the boundary element method, we calculated current densities induced in organs inside a worker to study the magnetic field reduction characteristics of shielding wear materials. We knew shielding wear with high permeability materials lowers current density more than high conductivity materials. We also found current density was lowest when high permeability materials were inside high conductivity materials in double layer shielding wear.

Corrosion Behavior of Titanium for Implant in Simulated Body Fluids (인공 체액 조건에서 임플랜트용 티타늄 소재의 부식 특성)

  • 이중배;최기열
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.110-118
    • /
    • 2004
  • The corrosion of pure titanium (CP- Ti Grade 2) and titanium alloy (Ti6Al4V ELI) were studied under various conditions of simulated body fluids. The static immersion test and the electrochemical test were performed in accordance with ISO 10271 : 2001. For the electrochemical test, the open circuit potential was monitored as a function of time, and the cyclic polarization curve was recorded. The corrosion resistance was evaluated from the values of corrosion potential, passivation current density, breakdown potential, and the shape of hysteresis etc. The effects of alloy type, surface condition, temperature, oxygen, and constituents in the fluids such as acid, chloride were estimated. Both specimens had extremely low dissolution rate in the static immersion test. They showed strong passivation characteristics in the electrochemical test. They maintained negligible current density throughout the wide anodic potential range. The passive layer was not broken up to 2.0 V (vs. SCE). The hysteresis and the shift of passivation potential toward the anodic direction was observed during the reversed scan. The passivation process appeared to be accelerated by oxygen in air or that dissolved in the fluids. The passivation also proceeded without oxygen by the reaction of constituents in the fluids. Acid or chloride in the fluids, specially later weakened the passive layer, and then induced higher passivation current density and less shift of passivation potential in the reversed scan. CP-Ti Grade 2 was more reactive than Ti6Al4V ELI in the fluids containing acid or chloride, but thicker layer produced on its surface provided higher corrosion resistance.

Hematopoiesis Activity of Sambucus javanica on Chloramphenicol-induced Aplastic Anemia Mouse Model

  • Putra, Wira Eka;Rifa'i, Muhaimin
    • Natural Product Sciences
    • /
    • v.25 no.1
    • /
    • pp.59-63
    • /
    • 2019
  • Hematopoiesis has a pivotal role in the maintenance of body homeostasis. Ironically, several hematological disorder caused by chemicals, drugs, and other environmental factors lead to severe bone marrow failure. Current treatments like stem cell transplantation and immunosuppression remain ineffective to ameliorate this diseases. Therefore, a newtreatment to overcome this entity is necessary, one of them by promoting the usage of medicinal plants. Thus, this study aimed to evaluate the hematopoiesis potency of S. javanica berries and leaves extracts in chloramphenicol (CMP)-induced aplastic anemia mice model. In this present study, several types of blood progenitor cell such as $TER-119^+VLA-4^+$ erythrocytes lineage, $Gr-1^+$ granulocytes, and $B220^+$ B-cell progenitor cells were evaluated by flow cytometry analysis. Accordingly, we revealed that S. javanica berries and leaves extracts significantly promoted $TER-119^+VLA-4^+$ erythrocytes lineage and $Gr-1^+$ granulocytes after exposed by CMP. Thus, these results suggested that S. javanica berries and leaves extracts might have hematopoiesis activity in CMP-induced aplastic anemia mice model.