• Title/Summary/Keyword: Body Core Temperature

Search Result 95, Processing Time 0.029 seconds

Numerical Modeling for the $H_2/CO$ Bluff-Body Stabilized Flames

  • Kim, Seong-Ku;Kim, Yong-Mo;Ahn, Kook-Young;Oh, Koon-Sup
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.879-890
    • /
    • 2000
  • This study investigates the nonpremixed $H_2/CO$-air turbulent flames numerically. The turbulent combustion process is represented by a reaction progress variable model coupled with the presumed joint probability function. In the present study, the turbulent combustion model is applied to analyze the nonadiabatic flames by introducing additional variable in the transport equation of enthalpy and the radiative heat loss is calculated using a local, geometry independent model. Calculations are compared with experimental data in terms of temperature, and mass fraction of major species, radical, and NO. Numerical results indicate that the lower and higher fuel-jet velocity flames have the distinctly different flame structures and NO formation characteristics in the proximity of the outer core vortex zone. The present model correctly predicts the essential features of flame structure and the characteristics of NO formation in the bluff-body stabilized flames. The effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

Effect of mixing of suckling piglets on change of body surface temperature in sows and piglets (포유자돈의 합사가 모돈과 자돈의 체표면 온도 변화에 미치는 영향)

  • Kim, Doo-Wan;Kim, Young-Hwa;Kim, Kwang-Sik;Kim, Ki-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.135-140
    • /
    • 2017
  • This study was conducted to investigate the effects of mixing with unfamiliar piglets on changes in the body surface temperature of sows and piglets during the suckling period. A total of 123 pigs (12 sows and 111 piglets) were used for this study. A control group of piglets of the same litter was maintained in the farrowing pen and compared to a treatment group of piglets of three different litters mixed by removing the partition in the farrowing pen. In the treatment group, mixing of piglets was performed at 10:00 a.m. on day 11 after parturition, and the body surface temperature of sows and piglets was taken using a thermo-graphic camera at 30 minutes after mixing. In the case of sows, the average surface temperature of the treatment group ($37.1^{\circ}C$) was significantly higher than that of the control ($36.3^{\circ}C$; p<0.05); however, the hot spot temperatures did not differ significantly between groups. In contrast, the average surface temperature of piglets was significantly decreased by mixing (37.5 and $36.0^{\circ}C$ in the control and treatment, respectively; p<0.01). Moreover, the hot spot temperature tended to be lower in the treatment ($39.1^{\circ}C$) than the control ($39.4^{\circ}C$), although there was no significant difference (p=0.079). These results suggest that mixing of unfamiliar piglets during the suckling period leads to changes in the body surface temperature of sows and piglets. In the future, the correlation between body surface temperature and body core temperature should be analyzed, and additional studies investigating the effects of mixing on the physiological changes in sows and piglets are required.

Effects of Spicy Soup with Red Pepper on Body Temperature, Blood Pressure, Appetite and Energy Intake (고추를 첨가한 매운국이 체온, 혈압, 식욕 및 섭취열량에 미치는 영향)

  • 김석영;김주영;박경민;장희애
    • Journal of Nutrition and Health
    • /
    • v.36 no.8
    • /
    • pp.870-881
    • /
    • 2003
  • We examined the effects of 5 g red pepper powder in soup preload given at breakfast on food intake, blood pressure, body core temperature, hunger, fullness and thirst scores in 29 female collage students. All subjects received two kind of soup preloads in random order. After ingesting a soup, subjects ate other food items as a breakfast ad libitum. Two soups were of the same composition and volume but differed only in 5 g red pepper. So one soup designated as "beef-vegetable" and the other soup designated as "red pepper". Red pepper soup consumption significantly enhanced energy and macronutrient intake by 17%. The hunger scores after test meals were inversely correlated with energy and nutrient intake in beef-vegetable meal. However, the postprandial hunger scores were not correlated with energy and nutrient intakes in red pepper meal. The fullness scores at 90 min after the red pepper meal were inversely correlated with energy and nutrient intake whereas the fullness scores after beef-vegetable meal were not correlated with energy and nutrient intake. These results suggest that hot red pepper ingestion may desensitize some gastrointestinal vagal afferents and disturb feeling of hunger and fullness. The postprandial changes of body temperatures in red pepper meal were higher for a longer time in comparison with those in beef-vegetable meal. For the red pepper meal there frequently were higher correlations between blood pressures and anthropometric measurements, compared to those in beef-vegetable meal. These results might be explained partly by the enhancing effects of capsaicin on thermogenesis and sympathetic nervous system activity. It is concluded that the ingestion of spicy soup with red pepper can increase appetite, energy and nutrient intakes in Korean females, and this effect might be related to disturbed feeling of hunger and fullness.hunger and fullness.

ESTIMATION OF THE FISSION PRODUCTS, ACTINIDES AND TRITIUM OF HTR-10

  • Jeong, Hye-Dong;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.729-738
    • /
    • 2009
  • Given the evolution of High-Temperature Gas-cooled Reactor(HTGR) designs, the source terms for licensing must be developed. There are three potential source terms: fission products, actinides in the fuel and tritium in the coolant. It is necessary to provide first an inventory of the source terms under normal operations. An analysis of source terms has yet to be performed for HTGRs. The previous code, which can estimate the inventory of the source terms for LWRs, cannot be used for HTGRs because the general data of a typical neutron cross-section and flux has not been developed. Thus, this paper uses a combination of the MCNP, ORIGEN, and MONTETEBURNS codes for an estimation of the source terms. A method in which the HTR-10 core is constructed using the unit lattice of a body-centered cubic is developed for core modeling. Based on this modeling method by MCNP, the generation of fission products, actinides and tritium with an increase in the burnup ratio is simulated. The model developed by MCNP appears feasible through a comparison with models developed in previous studies. Continuous fuel management is divided into five periods for the feeding and discharging of fuel pebbles. This discrete fuel management scheme is employed using the MONTEBURNS code. Finally, the work is investigated for 22 isotope fission products of nuclides, 22 actinides in the core, and tritium in the coolant. The activities are mainly distributed within the range of $10^{15}{\sim}10^{17}$ Bq in the equilibrium core of HTR-10. The results appear to be highly probable, and they would be informative when the spent fuel of HTGRs is taken into account. The tritium inventory in the primary coolant is also taken into account without a helium purification system. This article can lay a foundation for future work on analyses of source terms as a platform for safety assessment in HTGRs.

The Properties of Sintered Body by Using the Slip Casting Process with Remained Dental Zirconia Block after Machining (치과용 지르코니아 코어 가공후의 잔여물을 활용하여 주입성형법으로 제조한 소결체의 특성)

  • Kim, Sang-Su;Lee, Dong-Yoon;Seo, Jeong-Il;Bae, Won-Tae
    • Journal of Technologic Dentistry
    • /
    • v.34 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • Purpose: All ceramic crown, made from zirconia instead of metal for core material, is recognized the best esthetical prosthesis. Recently, high-priced zirconia blocks and expensive CAD/CAM machines come into use for making zirconia core. In this study, slip casting process is adapted to evaluate the possibility of the recycling the remained parts of zirconia block after machining. Methods: Remained zirconia blocks were reduced to powders with zirconia mortar, and screened with 180 mesh sieve. Passed powders were ball milled under various conditions to obtain the optimum zirconia slip for casting. Solid casting method was used for casting the specimens with plaster mold. Formed specimens were dried and biscuit fired at $1,000^{\circ}C$ for 1 hour. Biscuit fired specimens were finished with exact shape of square pillar. Finished specimens were fired from $1,200^{\circ}C$ to $1,550^{\circ}C$ at $50^{\circ}C$ intervals for 1 hour. Linear shrinkage, apparent porosity, water absorption, bulk density, and flexural strength were tested. Microstructures were observed by SEM. Results: Above examinations indicated that the optimum firing temperture was $1,500^{\circ}C$, and when fired at this temperature for 1 hour, apparent porosity was 0% and flexural strength was 680MPa. SEM photomicrographs showed uniform 200~300nm grain size, which is equal with microcture of sintered commercial zirconia block. when compare 24% linear shrinkage of cast specimen with 20% linear shrinkage of CAD/CAM machined block, it was estimated that the size controlling of cast core was not so difficult. Conclusion: According to the all of this experimental results, the cast zirconia core produced from the remained parts of zirconia block was possible to use for all ceramic denture.

An Analysis of Temperature Change and TI MI using Tissue Mimicking Phantom in Ultrasonic Examination (초음파검사에서 인체모의 매질팬텀을 이용한 온도 변화와 TI MI 분석)

  • Cheol-Min, Jeon;Jae-Bok, Han;Jong-Gil ,Kwak;Jong-Nam, Song
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.751-759
    • /
    • 2022
  • Currently, ultrasound examination for diagnostic ultrasound and health examination purposes is widely used, and it is showing an increasing trend due to the application of health insurance. However, the risk of ultrasound has not been clearly identified so far, and in this study, surface and deep temperature changes according to frequency and mode were measured by using a tissue mimicking phantom and TI and MI values were compared. A simulated phantom was manufactured by adding a small amount of kappa-caraginan powder with acoustic characteristics similar to that of the human body and potassium chloride for solidification, and the change of surface and depth temperature was measured using a surface thermometer and a probe thermometer. As a result, the convex probe using low frequency showed a higher temperature increase than the linear probe using high frequency, so there was a significant difference, and the temperature increase was the highest on the surface, and the depth of 1cm showed a temporary temperature increase, but there was no significant temperature change. There was no change in the deep temperature of 5 cm to 15 cm, and the TI and MI values did not change during the test time. Since only the surface temperature rose during the 15-minute test and there was no temperature change in the core, so it is not expected to show a temperature change that is harmful to the human body. However, it is thought that prolonged examination of one area may cause temperature rise, so it should be avoided.

Thermal Dynamics of Core and Periphery Temperature during Treadmill Sub-maximal Exercise and Intermittent Regional Body Cooling (트래드밀에서의 최대하 부하 운동과 간헐적 부위별 인체 냉각 시 심부와 말초 부위의 체온 변화)

  • Lee, Joo-Young;Koscheyev, Victor S.;Kim, Jung-Hyun;Warpeha, Joe M.
    • Journal of Korean Living Environment System
    • /
    • v.16 no.2
    • /
    • pp.89-100
    • /
    • 2009
  • The present study was designed to observe the thermal dynamics of core and skin temperatures during sub-maximal treadmill exercise; to investigate the effect of regional body cooling during short rest after the treadmill exercise on the thermal dynamics. Three conditions (No cooling, Head/Hand cooling, Leg cooling) were simulated in a climatic chamber at 24±1℃ and 50±5%RH. Subjects performed two bouts of treadmill exercise at a rate of 80%HRmax followed by rest. Body cooling with a hood, long gloves, and a blanket that circulated water set at 15℃ was assigned during two bouts of rest. The results showed that (1) rectal temperature (Tre) did not show significant difference between three conditions; (2) Skin temperatures had specific features, depending on body regions. In particular, the initial fall phenomena of skin temperatures at the onset of exercise were noteworthy in the chest, thigh, calf, and finger tip. Of these, the most significant initial fall was found in finger temperature (Tfing). (3) During the period of the initial fall in skin temperatures, Tre gradually increased. (4) The magnitude of the fall of Tfing at the onset of 2nd running was on average 4.8, 5.1 and 3.4℃ for Control, HH cooling, and Leg cooling, respectively (p<0.05). The initial drop of Tfing at the onset of running was maintained for an average of 8.1, 7.9 and 6.3 minutes for Control, HH cooling, and Leg cooling, with no significant differences. In conclusion, the initial fall phenomena at the onset of treadmill exercise reflected non-thermal factors, as opposed to internal thermal status. The magnitude of the initial fall in Tfing was affected by legs cooling. Therefore, the initial fall phenomenon should be considered when interpreting the thermal status of the shell during heavy works/exercises that assigned with intermittent regional body cooling.

Fracture Properties of Nuclear Graphite Grade IG-110 (원자로용급 흑연인 IG-110의 파괴특성)

  • Han, Dong-Yun;Kim, Eung-Sun;Chi, Se-Hwan;Lim, Yun-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.439-444
    • /
    • 2006
  • Artificial graphite generally manufactured by carbonization sintering of shape-body of kneaded mixture using granular cokes as filler and pitch as binder, going through pitch impregnation process if necessary and finally applying graphitization heat treatment. Graphite materials are used for core internal structural components of the High-Temperature Gas-cooled Reactors (HTGR) because of their excellent heat resistibility and resistance of crack progress. The HTGR has a core consisting of an array of stacked graphite fuel blocks are machined from IG-110, a high-strength, fine-grained isotropic graphite. In this study, crack stabilization and micro-structures were measured by bend strength and fracture toughness of isotropic graphite grade IG-110. It is important to the reactor designer as they may govern the life of the graphite components and hence the life of the reactor. It was resulted crack propagation, bend strength, compressive strength and micro-structures of IG-110 graphite by scanning electron microscope and universal test machine.

Study on the Nonlinear Characteristic Effects of Dielectric on Warpage of Flip Chip BGA Substrate

  • Cho, Seunghyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In this study, both a finite element analysis and an experimental analysis are executed to investigate the mechanical characteristics of dielectric material effects on warpage. Also, viscoelastic material properties are measured by DMA and are considered in warpage simulation. A finite element analysis is done by using both thermal elastic analysis and a thermo-viscoelastic analysis to predict the nonlinear effects. For experimental study, specimens warpage of non-symmetric structure with body size of $22.5{\times}22.5$ mm, $37.5{\times}37.5$ mm and $42.5{\times}42.5$ mm are measured under the reflow temperature condition. From the analysis results, experimental warpage is not similar to FEA results using thermal elastic analysis but similar to FEA results using thermo-viscoelastic analysis. Also, its effect on substrate warpage is increased as core thickness is decreased and body size is getting larger. These FEA and the experimental results show that the nonlinear characteristics of dielectric material play an important role on substrate warpage. Therefore, it is strongly recommended that non-linear behavior characteristics of a dielectric material should be considered to control warpage of FCBGA substrate under conditions of geometry, structure and manufacturing process and so on.

Metal Injection Molding Analysis for Developing Embroidering Machine Rotary Hooks (자수기용 로터리 훅 개발을 위한 금속분말 사출성형해석)

  • Kim, Sang-Yoon;Park, Bo-Gyu;Jung, Jae-Ok;Cho, Kyu-Sang;Chung, Ilsup
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.160-168
    • /
    • 2018
  • Among the components of rotary hooks, a core component of an embroidery sewing system, a study was conducted to apply metal injection molding to the manufacture of a hook body and a housing that was very difficult to mechanical working. The correlation of feedstock, a mixture of binder and SCM 415 metal powder, and properties of the pressure-volume-temperature interrelationship, viscosity, specific heat, and thermal conductivity were measured. Injection molds for the hook body and the housing were developed through injection molding analysis using these properties and conducted injection tests. Optimal injection gate position and number, injection pressure, and injection time were obtained through a comparison of analysis results with the experiment results.