Browse > Article
http://dx.doi.org/10.5762/KAIS.2017.18.1.135

Effect of mixing of suckling piglets on change of body surface temperature in sows and piglets  

Kim, Doo-Wan (National Institute of Animal Science, Rural Development Administration)
Kim, Young-Hwa (National Institute of Animal Science, Rural Development Administration)
Kim, Kwang-Sik (National Institute of Animal Science, Rural Development Administration)
Kim, Ki-Hyun (National Institute of Animal Science, Rural Development Administration)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.18, no.1, 2017 , pp. 135-140 More about this Journal
Abstract
This study was conducted to investigate the effects of mixing with unfamiliar piglets on changes in the body surface temperature of sows and piglets during the suckling period. A total of 123 pigs (12 sows and 111 piglets) were used for this study. A control group of piglets of the same litter was maintained in the farrowing pen and compared to a treatment group of piglets of three different litters mixed by removing the partition in the farrowing pen. In the treatment group, mixing of piglets was performed at 10:00 a.m. on day 11 after parturition, and the body surface temperature of sows and piglets was taken using a thermo-graphic camera at 30 minutes after mixing. In the case of sows, the average surface temperature of the treatment group ($37.1^{\circ}C$) was significantly higher than that of the control ($36.3^{\circ}C$; p<0.05); however, the hot spot temperatures did not differ significantly between groups. In contrast, the average surface temperature of piglets was significantly decreased by mixing (37.5 and $36.0^{\circ}C$ in the control and treatment, respectively; p<0.01). Moreover, the hot spot temperature tended to be lower in the treatment ($39.1^{\circ}C$) than the control ($39.4^{\circ}C$), although there was no significant difference (p=0.079). These results suggest that mixing of unfamiliar piglets during the suckling period leads to changes in the body surface temperature of sows and piglets. In the future, the correlation between body surface temperature and body core temperature should be analyzed, and additional studies investigating the effects of mixing on the physiological changes in sows and piglets are required.
Keywords
body surface temperature; mixing; sow; suckling piglets; thermos-graphic camera;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 P. S. Yan, S. Yamamoto, Relationship between thermoregulatory responses and heat loss in piglets. J. Anim. Sci., 71, 505-509. 2000.
2 T. M. Brown-Brand, R. A. Eigengerg, J. A. Nienaber, S. D. Kachman, Thermoregulatory profile of a newer genetic line of pigs. Livest. Prod. Sci., 71, 253-260. 2001. DOI: https://doi.org/10.1016/S0301-6226(01)00184-1   DOI
3 E. K. Worobec, I. J. H. Duncan, T. M. Widowsky, The effect of weaning at 7, 14 and 28 days on piglets behavior. Appl. Anim. Behav. Sci., 62, 173-182. 1999. DOI: https://doi.org/10.1016/S0168-1591(98)00225-1   DOI
4 L. N. Cox, J. J. Coopert, Observations on the pre- and post-weaning behavior of piglets reared in commercial outdoor and indoor environments. Br. Soc. Anim. Sci., 72, 75-86. 2001. DOI: https://doi.org/10.1017/S1357729800055570   DOI
5 L. Melotti, M. Oostindjer, J. E. Bolhuis, S. Held, M. Mendl, Coping personality type and environmental enrichment affect aggression at weaning in pigs. Appl. Anim. Behav. Sci., 133, 144-153. 2001. DOI: https://doi.org/10.1016/j.applanim.2011.05.018
6 K. S. Kim, E. S. Cho, Y. H. Kim, J. E. Kim, K. H. Seol, K. H. Kim, Effect of mixing with non-familiar piglets on change of body temperature. Korean J. Agri. Sci., 42, 231-235. 2015. DOI: https://doi.org/10.7744/cnujas.2015.42.3.231   DOI
7 I. G. Kim, S. H. Kang, Accuracy analysis of pulse wave sensor data of ear lable of husbandry livestock. J. Digit. Converg., 12, 387-393. 2014. DOI: https://doi.org/10.14400/JDC.2014.12.11.387
8 D. W. Lee, S. H. Lee, The future of ICT fusions based on smart technology. J. Digit. Converg., 10, 147-152. 2012.
9 K. S. Kang, Production of content for regional sources of the convergence industrialization. Based on agricultural management entities of the sixth industrialization in Chungcheongnam-do. J. Digit. Converg., 13, 483-490. 2015. DOI: https://doi.org/10.14400/JDC.2015.13.10.483
10 B. C. Kim, The ICT convergence agriculture automated machines designed for smart agriculture. J. Digit. Converg., 14, 141-148. 2016. DOI: https://doi.org/10.14400/JDC.2016.14.2.141
11 L. Pedersen, J. M. Studnitz, K. H. Jensen, A. M. Giersing, Suckling behavior of piglets in relation to accessibility to the sow and the presence of foreign litters. Appl. Anim. Behav. Sci., 58, 267-279. 1998. DOI: https://doi.org/10.1016/S0168-1591(97)00149-4   DOI
12 D. M. Weary, E. A. Pajor, M. Bonenfant, D. Fraser, D. L. Kramer, Alterative housing for sows and litters. Part 4. Effect of sow-controlled housing combined with a communal piglet area on pre- and post-weaning behavior and performance. Appl. Anim. Behav. Sci., 76, 279-290. 2002. DOI: https://doi.org/10.1016/S0168-1591(02)00011-4   DOI
13 I. C. De Jong, E. Lambooij, S. M. Korte, H. J. Blokhuis, J. M. Koolhaas, Mixing induces long-term hyperthermia in growing pigs. Anim. Sci., 69, 601-605. 1999.   DOI
14 R. C. Sulabo, E. J. Wiedemann, J. Y. Jacela, M. D. Tokach, J. L. Nelssen, J. M. De Rouchey, R. D. Goodband, S. S. Dritz, Effect of varying creep feeding duration on proportion of pigs consuming creep feed and pre-weaning performace. Swine Day, Kansas State University, Manhattan, KS, Conference paper, 38-45. 2007.
15 E. Hillman, F. von Hollen, B. Bunger, D. Todt, L. Schrader, Farrowing conditions affect the reactions of piglets towards novel environment and social confrontation at weaning. Appl. Anim. Behav. Sci., 81, 99-109. 2003. DOI: https://doi.org/10.1016/S0168-1591(02)00254-X   DOI
16 R. B. D'Eath, Socialising piglets before weaning improves social hierarchy formation when pigs are mixed post-weaning. Appl. Anim. Behav. Sci., 93, 199-211. 2005. DOI: https://doi.org/10.1016/j.applanim.2004.11.019   DOI
17 J. M. Campbell, J. D. Crenshaw, J. Polo, The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol., 4, 19-22. 2013. DOI: https://doi.org/10.1186/2049-1891-4-19   DOI
18 V. T. Kanaan, E. A. Pajor, D. C. Lay Jr, B. T. Richert, J. P. Garner, A note on the effect of co-mingling piglet litters on pre-weaning growth, injuries and responses to behavioural tests. Appl. Anim. Behav. Sci., 110, 386-391. 2008. DOI: https://doi.org/10.1016/j.applanim.2007.05.002   DOI
19 P. K. Theil, C. Lauridsen, H. Quesnel, Neonatal piglet survival: impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal, 8, 1021-1030. 2014. DOI: https://doi.org/10.1017/S1751731114000950   DOI
20 L. Olson, S. Faulkner, K. Lundstromer, A. Kerenyi, D. Kelen, M. Chandrasekaran, U. Aden, L. Olson, X. Golay, H. Lagercrantz, N. J. Robertson, D. Galter, Comparison of three hypothermic target temperatures for the treatment of hypoxic ischemia: mRNA level responses of eight genes in the piglet brain. Transl. Stroke. Res., 4, 248-257. 2013. DOI: https://doi.org/10.1007/s12975-012-0215-4   DOI
21 H. C. Hu, K. Xiao, J. Song, Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinase in pigs. J. Anim. Sci., 91, 1094-1101. 2013. DOI: https://doi.org/10.2527/jas.2012-5796   DOI
22 Y. L. Yin, Birth oxidative stress and the development of an antioxidant system in newborn piglets. Free Radical Res., 47, 1027-1035. 2013. DOI: https://doi.org/10.3109/10715762.2013.848277   DOI
23 G. B. Tactacan, S. Y. Cho, J. H. Cho, I. H. Kim, Performance responses, nutrient digestibility, blood characteristics, and measures of gastrointestinal health in weanling pigs fed protease enzyme. Asian-Australas. J. Anim. Sci., 29, 998-1003. 2016. DOI: https://doi.org/10.5713/ajas.15.0886   DOI
24 S. H. Lee, A study on digital convergence related with our life using ICT. J. Digit. Converg., 11, 429-434. 2013. DOI: https://doi.org/10.14400/JDPM.2013.11.11.429   DOI
25 H. H. Yang, W. G. Min, Y. H. Bae, Design and implementation of a radio telemetry system to monitor the deep body temperature of broilers. J. Korea Acad. Industr. Coop. Soc., 9, 81-86, 2008. DOI: https://doi.org/10.5762/KAIS.2008.9.1.081   DOI
26 D. D. Soerensen, L. J. Pedersen, Infrared skin temperature measurements for monitoring health in pig: a review. Acta Vet. Scand., 57(5), 1-11. 2015. DOI: https://doi.org/10.1186/s13028-015-0094-2   DOI