• Title/Summary/Keyword: Bochner-Schwartz theorem

Search Result 3, Processing Time 0.018 seconds

BOCHNER-SCHWARTZ THEOREM ON LOCALLY COMPACT ABELIAN GROUPS

  • Kim, Jin-Man;Cho, Jong-Gyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.7-16
    • /
    • 2001
  • We study the Fourier transformation on the Gelfand-Bruhat space of type S and characterize this space by means of Fourier transform on a locally compact abelian group G. Also, we extend Bochner-Schwartz theorem to the dual space of the Gelfand-Bruhat space and the space of Fourier hyperfunctions on G. respectively.

  • PDF

WHITE NOISE HYPERFUNCTIONS

  • Chung, Soon-Yeong;Lee, Eun-Gu
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.2
    • /
    • pp.329-336
    • /
    • 1999
  • We construct the Gelfand triple based on the space \ulcorner, introduced by Sato and di Silva, of analytic and exponentially decreasing function. This space denoted by(\ulcorner) of white noise test functionals are defined by the operator cosh \ulcorner, A=-(\ulcorner)\ulcorner+x\ulcorner+1. We also note that many properties like generalizations of the Paley-Wiener theorem and the Bochner-Schwartz theorem hold in this space as in the space of Hida distributions.

  • PDF

Translation invariant and positive definite bilinear fourier hyperfunctions

  • Jaeyoung Chung;Chung, Soon-Yeong;Kim, Dohan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.545-551
    • /
    • 1996
  • It is well known in the theory of distributions and proved in [GS, S] that $$ (i) (Bochner-Schwartz) Every positive definite (tempered) distribution is the Fourier transform of a positive tempered measure \mu. $$ $$ (ii) (Schwartz kernel theorem) Let B(\varphi, \psi) be a bilinear distribution. Then for some u \in D'(R^n \times R^n) B(\varphi, \psi) = u(\varphi(x)\bar{\psi}(y)) for every \varphi, \psi \in C_c^\infty. $$ $$ (iii) A translation invariant positive definite bilinear distribution B(\varphi, \psi) is of the form B(\varphi, \psi) = \smallint \varphi(x)\psi(x) d\mu(x) for every \varphi, \psi \in C_c^\infty (R^n), where \mu is a positive tempered measure.

  • PDF