TRANSLATION INVARIANT AND POSITIVE DEFINITE BILINEAR FOURIER HYPERFUNCTIONS

JAEYOUNG CHUNG, SOON-YEONG CHUNG AND DOHAN KIM

§1. Introduction

It is well known in the theory of distributions and proved in [GS, S] that

- (i) (Bochner-Schwartz) Every positive definite (tempered) distribution is the Fourier transform of a positive tempered measure μ .
- (ii) (Schwartz kernel theorem) Let $B(\varphi, \psi)$ be a bilinear distribution. Then for some $u \in \mathcal{D}'(\mathbb{R}^n \times \mathbb{R}^n)$ $B(\varphi, \psi) = u(\varphi(x)\overline{\psi}(y))$ for every $\varphi, \psi \in C_c^{\infty}$.
- (iii) A translation invariant positive definite bilinear distribution $B(\varphi, \psi)$ is of the form $B(\varphi, \psi) = \int \widehat{\varphi}(x) \overline{\widehat{\psi}}(x) d\mu(x)$ for every $\varphi, \psi \in C_c^{\infty}(\mathbb{R}^n)$, where μ is a positive tempered measure.

Recall that a generalized function u is said to be positive if $u(\varphi) \ge 0$ for any nonnegative test function φ and is said to be positive definite (or of positive type in Schwartz[S]) if $u(\varphi * \tilde{\varphi}) \ge 0$ for any nonnegative test function φ , where $\tilde{\varphi}(x) = \overline{\varphi(-x)}$. Also, a positive measure μ is said to be tempered if for some $p \ge 0$ $\int (1 + |x|^2)^{-p} d\mu < \infty$.

A bilinear functional $B(\varphi, \psi)$ on a space Φ of test functions is called a bilinear generalized function if

- (i) for every fixed $\psi \in \Phi$, $B(\varphi, \psi)$ is a generalized function in φ ,
- (ii) for every fixed $\varphi \in \Phi$, $\overline{B(\varphi, \psi)}$ is a generalized function in ψ ,

Received March 25, 1996.

¹⁹⁹¹ AMS Subject Classification: 46F15, 46F05, 46F10, 35K05.

Key words and phrases: Fourier hyperfunction, translation invariant, positive definite, bilinear.

Partially supported by KOSEF - GARC and Ministry of Education.

and is called translation invariant if $B(\varphi(x), \psi(x)) := B(\varphi(x+h), \psi(x+h))$ for all $h \in \mathbb{R}^n$. Also, a bilinear functional $B(\varphi, \psi)$ is called positive definite if $B(\varphi, \varphi) \geq 0$ for all $\varphi \in \Phi$.

For the case of Fourier hyperfunctions the parallel results of the above Bochner-Schwartz theorem and Schwartz kernel theorem were proved respectively in [CK, CKL].

In this paper the above property (iii) stated above will be generalized to the case of Fourier hyperfunctions (see Theorem 3.3).

§2. Preliminaries for Fourier hyperfunctions

We briefly introduce the real version of the space \mathcal{F} of test functions for the Fourier hyperfunctions as in [KCK].

DEFINITION 2.1 ([KCK]). (i) We denote by \mathcal{F} the set of all infinitely differentiable functions φ in \mathbb{R}^n with the property that there exist positive constants k and h such that

$$\sup_{\substack{x \in \mathbb{R}^n \\ \alpha \in \mathbb{Z}^n_+}} \frac{|\partial^{\alpha} \varphi(x)| \exp k|x|}{h^{|\alpha|} \alpha!} < \infty,$$

where $|\alpha| = \alpha_1 + \dots + \alpha_n$ for $\alpha \in \mathbb{Z}_+^n$ and $\partial^{\alpha} = \partial_1^{\alpha_1} \dots \partial_n^{\alpha_n}$, $\partial_j = \partial/\partial x_j$. (ii) We say that $\varphi_j \to 0$ in \mathcal{F} if there exist k > 0 and h > 0 such that

$$\sup_{\substack{x \in \mathbb{R}^n \\ \alpha \in \mathbb{Z}^n \\ i}} \frac{|\partial^{\alpha} \varphi_j(x)| \exp k|x|}{h^{|\alpha|} \alpha!} \to 0 \quad \text{as} \quad j \to \infty$$

(iii) We denote by \mathcal{F}' the strong dual space of \mathcal{F} and call its elements Fourier hyperfunctions.

To prove the main theorem we need the following Bochner Schwartz theorem and Schwartz kernel theorem as in [CK, CKL].

THEOREM 2.2([CK]). Let u be a positive definite Fourier hyperfunction. Then u is the Fourier transform of an infra-exponentially tempered measure. Conversely if μ is an infra-exponentially tempered measure then μ defines a Fourier hyperfunction.

Translation invariant and positive definite bilinear Fourier hyperfunctions

THEOREM 2.3([CKL]). If $K \in \mathcal{F}'(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$ then a linear map K determined by

(2.1)
$$\langle \mathcal{K}\varphi, \psi \rangle = K(\psi \otimes \varphi), \quad \psi \in \mathcal{F}(\mathbb{R}^{n_1}), \ \varphi \in \mathcal{F}(\mathbb{R}^{n_2})$$

is continuous in the sense that $\mathcal{K}\varphi_j$ converges to 0 in $\mathcal{F}'(\mathbb{R}^{n_1})$ if φ_j converges to 0 in $\mathcal{F}(\mathbb{R}^{n_2})$. Conversely, for every such linear map \mathcal{K} there is one and only one Fourier hyperfunction K such that (2.1) is valid.

The above theorems play an essential role in proving the main theorem in the next section.

§3. Main theorem

In this section we will prove the main theorem. For this we need the following lemmas which are not so trivial to prove.

LEMMA 3.1. If $u \in \mathcal{F}'(\mathbb{R})$ and du/dx = 0 then u is a constant, i.e., $u(\varphi) = \int c\varphi dx$ for some $c \in \mathbb{R}$. More generally, if $u \in \mathcal{F}'(\mathbb{R}^{n-1} \times \mathbb{R})$ and $du/dx_n = 0$, then u is of the form

$$u(\varphi) = \tilde{u}(\int \varphi(\cdot, x_n) \, dx_n)$$

where $\tilde{u} \in \mathcal{F}'(\mathbb{R}^{n-1})$ and $x = (x', x_n)$.

Proof. Let $\varphi \in \mathcal{F}(\mathbb{R})$ and $\int \varphi \, dx = 0$. Then we will show that φ is of the form $\varphi(x) = d\psi/dx$ for some $\psi \in \mathcal{F}(\mathbb{R})$. Hence it follows that

$$u(\varphi) = u\left(\frac{d\psi}{dx}\right) = -\frac{du}{dx}(\psi) = 0.$$

Define $\psi(x) = \int_{-\infty}^{x} \varphi(t) dt$. We claim that $\psi(x) \in \mathcal{F}(\mathbb{R})$. For some $h \geq 1$ and k > 0 we have

$$\sup_{\substack{x \in \mathbb{R} \\ \alpha > 1}} \frac{|\partial^{\alpha} \psi(x)| \exp k|x|}{h^{\alpha} \alpha!} \leq \sup_{\substack{x \in \mathbb{R} \\ \alpha > 1}} \frac{|\partial^{\alpha - 1} \varphi(x)| \exp k|x|}{h^{\alpha - 1} (\alpha - 1)!} < \infty.$$

Thus it suffices to prove that

$$\sup_{x \in \mathbb{R}} |\psi(x)| \exp k|x| < \infty$$

for some k > 0. For $x \le 0$ we have for some k > 0

$$\begin{split} |\psi(x)| &= \int_{-\infty}^{x} \exp(2k|t|) |\varphi(t)| \exp(-k|t|) \exp(-k|t|) \, dt \\ &\leq C \exp(-k|x|) \int_{-\infty}^{x} \exp(-k|t|) \, d^t \\ &\leq C' \exp(-k|x|). \end{split}$$

By the assumption that $\int \varphi(x) dx = 0$ we have for $x \ge 0$

$$\begin{split} |\psi(x)| &= |\int_x^\infty \varphi(t) \, dt| \\ &\leq \int_x^\infty \exp(2k|t|) |\varphi(t)| \exp(-k|t|) \exp(-k|t|) \, dt \\ &\leq C \exp(-k|x|) \int_x^\infty \exp(-k|t|) \, dt \\ &\leq C' \exp(-k|x|). \end{split}$$

Therefore, we have $\varphi(x) = d\psi/dx$ for some $\psi \in \mathcal{F}(\mathbb{R})$.

Now, choose $\chi \in \mathcal{F}(\mathbb{R})$ such that $\int \chi \, dx = 1$. For any $\varphi \in \mathcal{F}(\mathbb{R})$ set $\tilde{\varphi} = \varphi - (\int \varphi \, dx)\chi$. Then $\tilde{\varphi}$ belongs to $\mathcal{F}(\mathbb{R})$ and $\int \tilde{\varphi} \, dx = \int \varphi \, dx - (\int \varphi \, dx)(\int \chi \, dx) = 0$. Setting $u(\chi) = C$ we have $u(\varphi) = (\int \varphi \, dx)u(\chi) = c \int \varphi \, dx$.

To prove for the general case, let $u \in \mathcal{F}'(\mathbb{R}^{n-1} \times \mathbb{R})$ and χ as above. Define $\tilde{u} \in \mathcal{F}'(\mathbb{R}^{n-1})$ by

(3.1)
$$\tilde{u}(\tilde{\varphi}) = u(\tilde{\varphi}(x')\chi(x_n)), \quad \tilde{\varphi} \in \mathcal{F}(\mathbb{R}^{n-1}).$$

The definition (3.1) makes sense and $\tilde{u} \in \mathcal{F}'(\mathbb{R}^{n-1})$. For any $\varphi \in \mathcal{F}(\mathbb{R}^{n-1} \times \mathbb{R})$, set $\varphi_1 = \varphi - (\int \varphi(\cdot, x_n) \, dx_n) \chi(x_n)$. Then $\varphi_1 \in \mathcal{F}(\mathbb{R}^{n-1} \times \mathbb{R})$ and $u(\varphi_1) = 0$, since $\int \varphi_1(x) \, dx_n = 0$. Thus we have $u(\varphi) = u(\int \varphi(\cdot, x_n) \, dx_n \chi(x_n)) = \tilde{u}(\int \varphi(\cdot, x_n) \, dx_n)$ by the definition of u. This completes the proof.

Also, we need the following lemma which was proved in [CKL].

Translation invariant and positive definite bilinear Fourier hyperfunctions

LEMMA 3.2 [CKL]. Let $u \in \mathcal{F}'(\mathbb{R}^n \times \mathbb{R}^n)$. If $u(\varphi(x)\psi(y)) = 0$ for all φ , $\psi \in \mathcal{F}(\mathbb{R}^n)$ then $u \equiv 0$ in $\mathcal{F}'(\mathbb{R}^n \times \mathbb{R}^n)$.

We are now in a position to state and prove the main theorem.

THEOREM 3.3. Let $B(\varphi, \psi)$ be a translation invariant positive definite bilinear Fourier hyperfunction. Then $B(\varphi, \psi)$ can be written in the form

 $B(arphi,\psi) = \int \widehat{arphi}(x) \overline{\widehat{\psi}}(x) \, d\mu(x), \quad arphi, \ \psi \in \mathcal{F}$

where μ is a positive infra-exponentially tempered measure, i.e., $\int \exp(-\epsilon |x|) d\mu(x) < \infty$ for every $\epsilon > 0$.

Proof. By Theorem 2.3 $B(\varphi, \psi)$ can be written as $B(\varphi, \psi) = u(\varphi(x)\overline{\psi}(y))$ for some $u \in \mathcal{F}'(\mathbb{R}^n \times \mathbb{R}^n)$.

Set, for some $h \in \mathbb{R}^n$, $u_h(\varphi(x,y)) = u(\varphi(x+h,y+h))$. Then we have

$$\begin{split} (u_h - u)(\varphi(x)\overline{\psi}(y)) &= u_h(\varphi(x)\overline{\psi}(y)) - u(\varphi(x)\overline{\psi}(y)) \\ &= u(\varphi(x+h)\overline{\psi}(y+h)) - u(\varphi(x)\overline{\psi}(y)) \\ &= B(\varphi(x+h), \psi(y+h)) - B(\varphi(x), \psi(y)) \\ &= 0. \end{split}$$

It follows from Lemma 3.2 that $u = u_h$ in $\mathcal{F}'(\mathbb{R}^n \times \mathbb{R}^n)$, i.e.,

(3.2)
$$u(\varphi(x,y)) = u(\varphi(x+h,y+h)), \quad h \in \mathbb{R}^n$$

Define $u_1 \in \mathcal{F}'(\mathbb{R}^n \times \mathbb{R}^n)$ by $u_1(\psi(x,y)) = u(\psi(x+y,x-y))$. Then it follows from (3.2) that u_1 is invariant under translation by h. Consider the Newton quotient

$$\varphi_{h_j} = \frac{\varphi(x_1, \dots, x_j + h_j, \dots, x_n, y_1, \dots, y_n) - \varphi(x_1, \dots, x_n, y_1, \dots, y_n)}{h_j}.$$

Since u_1 is invariant under translation by h, we have $u_1(\varphi_{h_j}) = 0$ for all $h_j \neq 0$. Letting $h_j \to 0$ we have $du_1/dx_j = 0$ for all $j = 1, 2, \ldots, n$. Applying Lemma 3.1 for the variables $x_1, \dots x_n$, separately, we have

 $u_1(\varphi(x,y)) = \tilde{u}(\int \varphi(x,y)dx)$ for some $\tilde{u} \in \mathcal{F}'(\mathbb{R}^n)$. Thus for any $\varphi \in \mathcal{F}(\mathbb{R}^n \times \mathbb{R}^n)$ we have

$$\begin{split} u(\varphi(x,y)) &= u_1 \left(\varphi\left(\frac{1}{2}x + \frac{1}{2}y, \frac{1}{2}x - \frac{1}{2}y\right) \right) \\ &= \tilde{u} \left(\int \varphi\left(\frac{1}{2}x + \frac{1}{2}y, \frac{1}{2}x - \frac{1}{2}y\right) \, dx \right) \\ &= 2^n \tilde{u}(\int \varphi(x, x - y) dx). \end{split}$$

Consequently, it follows that

$$B(\varphi,\psi) = u(\varphi(x)\overline{\psi}(y)) = \tilde{u}(\int \varphi(x)\overline{\psi}(x-y)\,dx) = \tilde{u}(\varphi * \psi^*).$$

Since $B(\varphi, \psi)$ is positive definite, \tilde{u} is a positive definite Fourier hyperfunction. By Theorem 2.2 we have

$$\tilde{u}(\varphi * \psi^*) = \int (\varphi * \psi^*) d\mu(x) = \int \widehat{\varphi}(x) \overline{\widehat{\psi}}(x) d\mu(x)$$

for some positive measure μ which is infra-exponentially tempered. This completes the proof.

References

- [CK] S.-Y. Chung and D. Kim, Publ. RIMS, Kyoto Univ. 31, 829-845, Distributions with exponential growth and Bochner-Schwartz theorem for Fourier hyperfunctions.
- [CCK] J. Chung, S.-Y. Chung and D. Kim, A characterization for Fourier hyperfunctions, Publ. RIMS, Kyoto Univ. 30 (1994), 203-208.
- [CKL] S.-Y. Chung, D. Kim and E.G. Lee, Schwartz kernel theorem for the Fourier hyperfunctions, Tsukuba J. Math. 19, 377-385.
- [GS] I.M. Gelfand and G.E. Shilov, Generalized functions II, IV, Academic Press, New York, 1968.
- [KCK] K.W. Kim, S.-Y. Chung and D. Kim, Fourier hyperfunctions as the boundary values of smooth solutions of heat equations, Publ. RIMS, Kyoto Univ. 29 (1993), 289-300.
- [S] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.

Translation invariant and positive definite bilinear Fourier hyperfunctions

JAEYOUNG CHUNG

DEPARTMENT OF MATHEMATICS, KUNSAN NATIONAL UNIVERSITY, KUNSAN 573-360, KOREA

Soon-Yeong Chung

DEPARTMENT OF MATHEMATICS, SOGANG UNIVERSITY, SEOUL 121-742, KOREA *E-mail*: sychung@ccs.sogang.ac.kr

DOHAN KIM

DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-742, KOREA

E-mail: dhkim@math.snu.ac.kr