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TRANSLATION INVARIANT AND POSITIVE
DEFINITE BILINEAR FOURIER HYPERFUNCTIONS

JAEYOUNG CHUNG, SOON-YEONG CHUNG AND DoHAN Kiwm

61. Introduction

It is well known in the theory of distributions and proved in [GS, S]
that

(1) (Bochner-Schwartz) Every positive definite (tempered) distri-
bution is the Fourier transform of a positive tempered measure
4.

(i1) (Schwartz kernel theorem) Let B(p, ) be a bilinear distribu-
tion. Then for some v € D'(R™ x R™) By, v) = u(o(x)d(y))
for every ¢, v € C°.

(ii1) A translation invariant positive definite bilinear distribution
B, 1) is of the form B(g,v) = [ @(.’1‘)@(.{')d/t(r) for every
w, ¥ € C>(R"™), where u is a positive temnpered measure.

Recall that a generalized function u is sald to be positive if u{p) >
0 for any nonnegative test function ¢ and is said to be positive definite
(or of positive type in Schwartz[S]) if u(yp * ») > ) for any nonnegative

test function ¢, where @(r) = p(—z). Also, a positive measure j is
said to be tempered if for some p > 0 [(1+ |2]?) P du < oc.

A bilinear functional B(p,v) on a space ® of test functions is called
a bilinear generalized function if

(1) for every fixed v» € ®, B(¢, ) is a generalized function in ¢,
(i1) for every fixed ¢ € @, B(p, ) is a generalized function in ¥,
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and is called translation invariant if B(p(x), ¥(z)) = Ble(x+h), v (z+
h)) for all h € R™. Also, a bilinear functional B(y, ) is called positive
defintte if B(p,¢) > 0 for all ¢ € ®.

For the case of Fourier hyperfunctions the parallel results of the
above Bochner-Schwartz theorem and Schwartz kernel theorem were
proved respectively in [CK, CKL].

In this paper the above property (iii) stated above will be generalized
to the case of Fourier hyperfunctions (see Theorem 3.3).

§2. Preliminaries for Fourier hyperfunctions

We briefly introduce the real version of the space F of test functions
for the Fourier hyperfunctions as in [KCK].

DErINITION 2.1 ([KCK]). (1) We denote by F the set of all infin-
itely differentiable functions o in R™ with the property that there exist
positive constants k& and h such that

|0%p(x)|exp k|z| o
hlelgl ’

sup

reR™
ani

where |a| = a4+ +a, fora € Z] and 0% = 07" --- 05", 8; = 0/ 0x;.

(i1) We say that ¢; — 0 in F if there exist k¥ > 0 and k > 0 such that

[0%¢j(x)| exp kx|
hlela!

sup -0 as j — o0

zeR™

ﬂEZi
(ii1) We denote by F' the strong dual space of F and call its elements
Fourter hyperfunctions.

To prove the main theorem we need the following Bochner Schwartz
theorem and Schwartz kernel theorem as in [CK, CKL].

THEOREM 2.2([CK]). Let u be a positive definite Fourier hyper-
function. Then u is the Fourier transform of an infra-exponentially
tempered measure. Conversely if p is an infra-exponentially tempered
measure then p defines a Fourier hyperfunction.
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THEOREM 2.3([CKL]). If K € F/(R™ x R™) then a linear map K

determined by
(2.1) (Ko, ¥) = K(¥p @), e FR™), ¢ € F(R")

1s continuous in the sense that Kp; converges to 0 in F'(R™) if ¢;
converges to 0 in F(R"?). Conversely, for every such linear map K

there is one and only one Fourier hyperfunction K such that (2.1} is
valid.

The above theorems play an essential role in proving the main the-
orem in the next section.

§3. Main theorem

In this section we will prove the main theorem. For this we need the
following lemmas which are not so trivial to prove.

LEMMA 3.1. If u € F'(R) and du/dx = 0 then u is a constant, ILe.,
u(yp) = [ cpdr for some ¢ € R. More generally, if u € F'(R"™! x R)
and du/dx, = 0, then u is of the form

u(g) = ﬂ(/w-,xn)dwn)

where ¢ € F'(R"™ ') and z = (z',2,,).

Proof. Let ¢ € F(R) and [ ¢ dr = 0. Then we will show that ¢ is
of the form ¢(z) = di/dx for some ¥ € F(R). Hence it follows that

(e
o) =u(G) = -0 =0

Define ¢(z) = f—foo @(t)dt. We claim that ¢(z) € F(R). For some
h>1and k > 0 we have
il a—1 . o
0@ e kel _ 10" el exphle] _

reR hea! T rer he Y a - 1)
a>1 a>1
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Thus it suffices to prove that

sup {v(x)|exp k|z] < oc
r€R

for some k > 0. For z < 0 we have for some k > 0
[ (x)] :/ exp(2k|t|)e(t)] expl —k|t|) exp(—kl|t]) dt

< Cexp(—k|x]) / exp(—kl|t])dt
< Clexp(—k|r]).

By the assumption that [ p(z)dr = 0 we have for « > 0

= =1 [ ety

: / * exp(2K[H) ()] expl(— kt]) expl—klt]) dt

< Cexp(—klz]) / exp(—Fkl|t])dt
< C'exp(—klz|).

Therefore, we have () = dy /dz for some v € F(R).

Now, choose y € F(R) such that [ xdr = 1. For any ¢ € F(R) set
$ = ¢ — ([ ypdx)x. Then ¢ belongs to F(R) dIld [pdr = [¢dr -
([ dr)( [ xde)=0. Setting u(y) = C we have u(y>) = ([ ¢ driu(y) =
¢ [pda.

To prove for the general case, let u € F/(R"™! x R) and \ as above.
Define i € F'(R"71) by

(3.1) i(3) = uld(a N (za)). ¢ € FR™).

The definition (3.1) makes sense and ¢ € F'(R"7!). For any ¢ €
F(R* xR), set o1 = @~ ([ (-, @n)dryn)x(zn). Then gy € F(R* ! x
R) and u(yy) = () since [ oy (x da‘n = (. Thus we have u(p) =
u( [ xn)dr,x(xs)) = a( [ o(-,x,)dr,) by the definition of u. This
completes the proof

Also, we need the following lemma which was proved in [CKL].
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LEmMA 3.2 [CKL]. Let u € F'(R™ x R"). F'u(p(z)¥(y)) = 0 for
all g, ¥ € F(R™) then u =0 in F'(R™ x R™).

We are now in a position to state and prove the main theorem.

THEOREM 3.3. Let B(p,%) be a translation mvariant positive def-
inite bilinear Fourier hyperfunction. Then B(y, ) can be written in
the form

wa»:/ﬂﬂﬂmwmm o e F

where p is a positive infra-exponentially tempered measure, 1.c.,
[ exp(—e|z|) du(z) < oc for every € > 0.

Proof. By Theorem 2.3 B(yp, ) can be written as
Bl = ule(x)e(y)) for some u € F(R™ x R").
Set, for some h € R", up(plr.y)) = u{e(e + h,y + h)). Then we

have

(wn = w)(p(2)P(y)) = unlp(e)d(y)) — ulelz)vly))
= u(e(r +h) 1”(y + h)) - u(g,:(br,)z/’?(y))
= Blo(r +h),v(y + k)~ Ble(r),v(y))
= 0.

It follows from Lemma 3.2 that u = u, in F/(R™ x R™). i.c..

(3.2) u(e(x,y)) = u(plz + hyy+h)), HeR”

Define u; € F'(R™ x R™) by uy(v(z,y)) = uw(v(x + y, 2 — y)). Then it
follows from (3.2) that u; is lllVaI'IrLIlt under translation by k. Consider

the Newton quotient

) . @(rlz"':*Tj“l'h]-,"'v-rmyl"' J/n)“ ATy T Y1 Yn)
Ph; = 7 .

J

Since uy is invariant under translation by h, we have u (@n, ) = 0 for
all h; # 0. Letting h; — 0 we have dul/d;l‘ =0frall j=1,2,....n
Applying Lemma 3.1 for the variables x,,- - z,. separately. we have
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ur(e(z,y)) = @ [ ¢(z,y)dz) for some & € F'(R"). Thus for any ¢ €
F(R™ x R™) we have

u(p(z,y)) = u; (‘P (

I
]
3
&
5
=
£
|
o
2,
&~

Consequently, it follows that
Bl = ulpla 5(0)) = ol [ ol — 1) ds) = alp 5 ).

Since B(p, 1) is positive definite,  is a positive definite Fourier hyper-
function. By Theorem 2.2 we have

g+ ) = [loxd™) dute) = [ Bla)ite)duta)

for some positive measure p which is infra-exponentially tempered. This
completes the proof.
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