• Title/Summary/Keyword: Boarding and alighting time

Search Result 15, Processing Time 0.027 seconds

An Empirical Model for Estimating Bus Boarding and Alighting Time (버스 승하차시간 추정 모형 개발)

  • Seong, Myeong Eon;Choi, Keechoo;Shin, Kangwon;Chung, Woohyun;Lee, Kyu Jin
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.2
    • /
    • pp.152-161
    • /
    • 2014
  • The total boarding and alighting time models have been developed by applying the multiple regression analysis with three variables; numbers of boarding or alighting passengers, non-sitting passengers, and the step-height from the ground. Such variables have influenced to the total boarding time model with the most influential in the numbers of boarding or alighting passengers and the least in the step-height. On the total alighting time model, the numbers of alighting passengers are the most strongest while the step-heights the least. The total boarding and alighting time models can be used in practices for the prediction of current and future bus stops' capacities in TOD-based towns.

An Analysis of Boarding and Alighting Times for Urban Railway Vehicles (도시철도 열차 승하차시간 분석에 관한 연구)

  • Kim, Jungtai;Kim, Moo Sun;Hong, Jae Sung;Cho, Yong Hyun;Kim, Taesik
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.210-215
    • /
    • 2014
  • Various methods have been developed in an effort to increase the scheduled speeds of the urban railways. Reducing the train dwell times by extending door widths is one such method. However, there is thus far no domestic model of boarding and alighting that is appropriate to lead to boarding and alighting time reductions if the door width is extended. Foreign models are not suitable because human behaviors, which are important factors when assessing boarding and alighting times, differ from country to country. In this study, a boarding and alighting model for domestic urban railways is proposed and related equations and parameters are derived from measured and experimental data. The model can be employed to assess time reductions in Korean railroad system if the door widths are extended.

Classification of Seoul Metro Stations Based on Boarding/ Alighting Patterns Using Machine Learning Clustering (기계학습 클러스터링을 이용한 승하차 패턴에 따른 서울시 지하철역 분류)

  • Min, Meekyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.13-18
    • /
    • 2018
  • In this study, we classify Seoul metro stations according to boarding and alighting patterns using machine earning technique. The target data is the number of boarding and alighting passengers per hour every day at 233 subway stations from 2008 to 2017 provided by the public data portal. Gaussian mixture model (GMM) and K-means clustering are used as machine learning techniques in order to classify subway stations. The distribution of the boarding time and the alighting time of the passengers can be modeled by the Gaussian mixture model. K-means clustering algorithm is used for unsupervised learning based on the data obtained by GMM modeling. As a result of the research, Seoul metro stations are classified into four groups according to boarding and alighting patterns. The results of this study can be utilized as a basic knowledge for analyzing the characteristics of Seoul subway stations and analyzing it economically, socially and culturally. The method of this research can be applied to public data and big data in areas requiring clustering.

Algorithm for Correcting Error in Smart Card Data Using Bus Information System Data (버스정보시스템 데이터를 활용한 교통카드 정류장 정보 오류 보정 알고리즘)

  • Hye Inn Song;Hwa Jeong Tak;Kang Won Shin;Sang Hoon Son
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.131-146
    • /
    • 2023
  • Smart card data is widely used in the public transportation field. Despite the inevitability of various errors occur during the data collection and storage; however, smart card data errors have not been extensively studied. This paper investigates inherent errors in boarding and alighting station information in smart card data. A comparison smart card data and bus boarding and alighting survey data for the same time frame shows that boarding station names differ by 6.2% between the two data sets. This indicates that the error rate of smart card data is 6.2% in terms of boarding station information, given that bus boarding and alighting survey data can be considered as ground truth. This paper propose 6-step algorithm for correcting errors in smart card boarding station information, linking them to corresponding information in Bus Information System(BIS) Data. Comparing BIS data and bus boarding and alighting survey data for the same time frame reveals that boarding station names correspond by 98.3% between the two data sets, indicating that BIS data can be used as reliable reference for ground truth. To evaluate its performance, applying the 6-step algorithm proposed in this paper to smart card data set shows that the error rate of boarding station information is reduced from 6.2% to 1.0%, resulting in a 5.2%p improvement in the accuracy of smart card data. It is expected that the proposed algorithm will enhance the process of adjusting bus routes and making decisions related to public transportation infrastructure investments.

A Statistical Study on Doorway Flow-time for Designing Doors of Ui LRT (우이-신설 경전철 출입문 설계를 위한 승하차시간 분석 연구)

  • Oh, Suk-Mun;Jang, Hyeon-Mog;Shin, Han-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.2
    • /
    • pp.144-150
    • /
    • 2013
  • This paper presents an analysis of door design for the Ui LRT based on experiments to predict doorway flow-time and their analyses results. A similar railway vehicle (from Gimhae LRT) and operational conditions are utilized to assess the doorway flow-time through repetitive experiments. Design of the experiments consists of four scenarios, and the experiments are repeated 39 times in total. We use the results of the experiments to verify the design of doors of Ui LRT (e.g. the required number of doors and their width). Various statistical analyses are carried out for the flow-time with respect to the number of boarding/alighting passengers. We make three category levels of boarding/alighting passengers, and analyze the mean and variance for each category, and then carry out One-Way ANOVA to analyze how the number of boarding/alighting and onboard passengers impact flow-time. The results of this paper can be used for making decisions about doors of the LRT vehicle.

Analysis of The Low Floored Bus Effect on Elderly People (교통약자를 위한 저상버스도입의 효과에 대한 연구 - 노년층을 중심으로 -)

  • Kim, Ji Young;Rhee, Jong Ho;Oh, Seung Hwoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.29-34
    • /
    • 2008
  • The Korean society has been changed to the aging one. The number of elderly people has been in creasing rapidly. For their social and economic activity, more convenient transport services have to be offered. Specifically, increasing mobility is one of the most urgent policies for them. One action of the policy in Seoul has introduced low floor buses since 2003. This paper shows how low floor buses affect on passengers' boarding and alighting time through the field survey. In the analysis of the survey results it has been found that the low floor buses can reduce average boarding time by 0.8 sec, especially, by 1.1 sec (about 36%) for elderly passengers. These outcomes expect total bus operating hours as well as headways could be reduced, and operating cost and passengers' waiting time could be saved.

A Estimation of Dwell Time of Low-floor Buses considering S-BRT Operation Behavior (S-BRT 운행행태를 고려한 저상버스의 정차시간 예측모형)

  • Shin, S.M.;Lee, S.B.;Kim, Y.C.;Park, S.H.;Yu, Y.S.;Choi, J.H.
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.72-79
    • /
    • 2021
  • This basic study introduces the concept of S-BRT and develops dwell time estimation models that consider road geometry and S-BRT characteristics for a signal operation strategy to meet the S-BRT's operational goal of high speed and punctuality. Field surveys of low-floor buses similar in shape to S-BRTs and data collection of passengers, station elements, vehicle elements, and other factors that can affect stop times were used in a regression analysis to establish statistically significant dwell time estimation models. These dwell time estimation models are developed by categorizing according to the locations of the signal or sidewalk that have the most impact on the dwell time. In this way, the number of people boarding and alighting the bus at the crowded door and the number of people boarding and alighting the bus at the front door considering the internal congestion was analyzed to affect the dwell time. The estimation dwell time models in this study can be used in the establishment of strategies that provide priority signals to S-BRTs.

A study on accident prevention AI system based on estimation of bus passengers' intentions (시내버스 승하차 의도분석 기반 사고방지 AI 시스템 연구)

  • Seonghwan Park;Sunoh Byun;Junghoon Park
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.57-66
    • /
    • 2023
  • In this paper, we present a study on an AI-based system utilizing the CCTV system within city buses to predict the intentions of boarding and alighting passengers, with the aim of preventing accidents. The proposed system employs the YOLOv7 Pose model to detect passengers, while utilizing an LSTM model to predict intentions of tracked passengers. The system can be installed on the bus's CCTV terminals, allowing for real-time visual confirmation of passengers' intentions throughout driving. It also provides alerts to the driver, mitigating potential accidents during passenger transitions. Test results show accuracy rates of 0.81 for analyzing boarding intentions and 0.79 for predicting alighting intentions onboard. To ensure real-time performance, we verified that a minimum of 5 frames per second analysis is achievable in a GPU environment. his algorithm enhance the safety of passenger transitions during bus operations. In the future, with improved hardware specifications and abundant data collection, the system's expansion into various safety-related metrics is promising. This algorithm is anticipated to play a pivotal role in ensuring safety when autonomous driving becomes commercialized. Additionally, its applicability could extend to other modes of public transportation, such as subways and all forms of mass transit, contributing to the overall safety of public transportation systems.

A Heuristic Outlier Filtering Algorithm for Generating Link Travel Time using Taxi GPS Probes in Urban Arterial (링크통행시간 생성을 위한 이상치 제거 알고리즘 개발)

  • Choi, Keechoo;Choi, Yoon-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.731-738
    • /
    • 2006
  • Facing congestion, people want to know traffic information about their routes, especially real-time link travel time (LTT). In this paper, as a sequel paper of the previous non-taxi based LTT generating study by Choi et al. (1998), taxi based GPS probes have been tried to produce LTT for urban arterials. Taxis in itself are good deployment mode of GPS probes although it by nature experiences boarding and alighting time noises which should be accounted. A heuristic real-time dynamic outlier filter algorithm for taxi GPS probe has been developed focusing on urban arterials. An actual traffic survey for dynamic link travel times has been conducted using license plate method for the test arterials of Seoul city transportation network. With the algorithm, it is estimated that 70% of outliers have been filtered and the relative error has been improved by 73.7%. The filtering algorithm developed here would be expected to be in use for other spatial sites with some calibration efforts. Some limitations and future research agenda have also been discussed.

A Study on Selected Station Analysis of AFC-Based Integrated Transit Network - Focused on Subway Transfer Stations in Seoul Metropolitan Area - (AFC-기반 통합대중교통 네트워크의 Selected Station Analysis (SSA) 연구 - 수도권 지하철 환승역사를 중심으로 -)

  • Lee, Mee Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.67-83
    • /
    • 2018
  • This research is motivated by the question, "Where, when, and through what mode does an individual passenger moving within a subway station use to travel from starting to final destinations ?" To answer this, the stations passed by the individual passenger, the path taken, and modes used need to be known beforehand. In the metropolitan integrated public transportation fare system, Automated Fare Collection System(AFC) can be a source of information on transit modes, stations, and paths of individual passengers. AFC calculates a fare for the passenger based on travel data such as boarding and alighting stations, time, and mode used. In this research, an Selected Station Analysis(SSA) method, in which AFC data is used to observe passenger movement in the metropolitan public transportation subway station from the perspective of subway transfer stations, is proposed. SSA subdivides individual passenger movement in transfer stations and analyzes initial station/time and final destination station/time information using the trip chain perspective.