• Title/Summary/Keyword: Blumeria graminis

Search Result 11, Processing Time 0.031 seconds

Virulence Structure of Blumeria graminis f. sp. avenae Populations in Poland across 2014-2015

  • Cieplak, Magdalena;Terlecka, Katarzyna;Ociepa, Tomasz;Zimowska, Beata;Okon, Sylwia
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.115-123
    • /
    • 2021
  • The purpose of this study was to determine the virulence structure of oat powdery mildew (Blumeria graminis f. sp. avenae, Bga) populations in Poland collected in 2014 and 2015. Powdery mildew isolates were collected from 18 locations in Poland. In total, nine lines and cultivars of oat, with different mildew resistance genes, were used to assess virulence of 180 isolates. The results showed that a significant proportion of the Bga isolates found in Poland were virulent to differentials with Pm1, Pm3, Pm6, and Pm3 + Pm8 genes. In contrast Pm4, Pm5, Pm2, and Pm7 genes were classified as resistant to all pathogen isolates used in the experiment. Based on obtained results we can state that there are differences in virulence pattern and diversity parameters between sites and years, but clear trends are not deducible.

Antifungal Activity of Lower Alkyl Fatty Acid Esters against Powdery Mildews

  • Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Yu, Ju-Hyun;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.360-366
    • /
    • 2010
  • In the course of a searhing environmental friendly antifungal compounds, we found that mixture of methyl esters of fatty acids obtained from soybean oil had potent control efficacy against barley powdery mildew (Blumeria graminis f. sp. hordei). In this study, ten alkyl fatty acid esters (AFAEs) were tested for in vivo antifungal activity against five plant diseases such as rice blast, rice sheath blight, tomato gray mold, tomato late blight and barley powdery mildew. Some AFAEs showed the most control efficacy against barley powdery mildew among the tested plant diseases. By 5-hr protective and 1-day curative applications, six AFAEs ($3,000\;{\mu}g/ml$), including methyl and ethyl palmitates, methyl and ethyl oleates, methyl linoleate, and methyl linolenate demonstrated both curative and protective activities against barley powdery mildew. In contrary, methyl laurate strongly controlled the development of powdery mildew on barley plants by curative treatment at a concentration of $333\;{\mu}g/ml$, but did not show protective activity even at $3,000\;{\mu}g/ml$. Under greenhouse conditions, the seven AFAEs ($1,000\;{\mu}g/ml$) except for methyl and ethyl stearates, and methyl caprylate also effectively controlled cucumber powdery mildew caused by Podosphaera xanthii. Among them, methyl and ethyl palmitates ($333\;{\mu}g/ml$) represented the most control activity of more than 68% against the disease. The results are the first report on the antifungal activity of methyl and ethyl esters of fatty acids against plant pathogenic fungi.

Combined Effect of CO2 andTemperature on Wheat Powdery Mildew Development

  • Matic, Slavica;Cucu, Maria Alexandra;Garibaldi, Angelo;Gullino, Maria Lodovica
    • The Plant Pathology Journal
    • /
    • v.34 no.4
    • /
    • pp.316-326
    • /
    • 2018
  • The effect of simulated climate changes by applying different temperatures and $CO_2$ levels was investigated in the Blumeria graminis f. sp. tritici/wheat pathosystem. Healthy and inoculated plants were exposed in single phytotrons to six $CO_2$+temperature combinations: (1) 450 ppm $CO_2/18-22^{\circ}C$ (ambient $CO_2$ and low temperature), (2) 850 ppm $CO_2/18-22^{\circ}C$ (elevated $CO_2$ and low temperature), (3) 450 ppm $CO_2/22-26^{\circ}C$ (ambient $CO_2$ and medium temperature), (4) 850 ppm $CO_2/22-26^{\circ}C$ (elevated $CO_2$ and medium temperature), (5) 450 ppm $CO_2/26-30^{\circ}C$ (ambient $CO_2$ and high temperature), and (6) 850 ppm $CO_2/26-30^{\circ}C$ (elevated $CO_2$ and high temperature). Powdery mildew disease index, fungal DNA quantity, plant death incidence, plant expression of pathogenesis-related (PR) genes, plant growth parameters, carbohydrate and chlorophyll content were evaluated. Both $CO_2$ and temperature, and their interaction significantly influenced powdery mildew development. The most advantageous conditions for the progress of powdery mildew on wheat were low temperature and ambient $CO_2$. High temperatures inhibited pathogen growth independent of $CO_2$ conditions, and no typical powdery mildew symptoms were observed. Elevated $CO_2$ did not stimulate powdery mildew development, but was detrimental for plant vitality. Similar abundance of three PR transcripts was found, and the level of their expression was different between six phytotron conditions. Real time PCR quantification of Bgt was in line with the disease index results, but this technique succeeded to detect the pathogen also in asymptomatic plants. Overall, future global warming scenarios may limit the development of powdery mildew on wheat in Mediterranean area, unless the pathogen will adapt to higher temperatures.

In Vivo Antifungal Activities of 67 Plant Fruit Extracts Against Six Plant Pathogenic Fungi

  • Choi Gyung-Ja;Kim Jin-Cheol;Jang Kyoung-Soo;Lim He-Kyoung;Park Il-Kwon;Shin Sang-Chul;Cho Kwang-Yun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.491-495
    • /
    • 2006
  • Methanol extracts of fruits of 67 plants were screened for in vivo antifungal activity against Magnaporthe grisea, Corticium sasaki, Botrytis cinerea, Phytophthora infestans, Puccinia recondita, and Blumeria graminis f. sp. hordei. Among them, 13 plant extracts ($3,000\;{\mu}g/ml$) showed more than 90% disease-control efficacy against at least one of six plant diseases. Specifically, the extracts of Aleurites fordii, Angelica dahurica, Camellia japonica, Chamaecyparis pisifera, Pittosporum tobira, and Styrax japonica controlled more than 90% of the development of rice blast at $1,000{\mu}g/ml$. Extracts of both S. japonica and A. dahurica fruits at $333{\mu}g/ml$ concentration displayed strong antifungal activity against M. grisea on rice seedlings.

Control Efficacy of Phloretin Isolated from Apple Fruits Against Several Plant Diseases

  • Shim, Sang-Hee;Jo, Su-Jung;Kim, Jin-Cheol;Choi, Gyung-Ja
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.280-285
    • /
    • 2010
  • In the course of a searching natural antifungal compounds from plant sources, we found that the methanol extract ($3,000\;{\mu}g/ml$) of Malus domestica fruits had potential of control against rice blast (Magnaporthe grisea) and tomato late blight (Phytophthora infestans). Under bioassay-guided purification, we isolated phloretin, a phenolic compound, with in vivo antifungal activity against M. grisea. By 1-day protective application of phloretin ($500\;{\mu}g/ml$), the compound strongly inhibited the disease development of M. grisea and P. infestans on rice and tomato seedlings, respectively. And red pepper anthracnose caused by Colletotrichum coccodes also was moderately suppressed. However, rice sheath blight (Rhizoctonia solani AG1), and barley powdery mildew (Blumeria graminis f. sp. hordei) were hardly controlled. In addition, the compound showed in vitro antifungal activity against some plant pathogenic fungi including Phytophthora capsici, Alternaria panax, Sclerotinia sclerotiorum, R. solani AG4, and M. grisea. This is the first report on the antifungal activity of phloretin against plant pathogenic fungi.

Cellular and Molecular Pathology of Fungi on Plants Studied by Modern Electron Microscopy

  • Sanwald, Sigrun-Hippe
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1995.06b
    • /
    • pp.27-53
    • /
    • 1995
  • In plant pathology there is an increasing necessity for improved cytological techniques as basis for the localization of cellular substances within the dynamic fine structure of the host-(plant)-pathogen-interaction. Low temperature (LT) preparation techniques (shock freezing, freeze substitution, LT embedding) are now successfully applied in plant pathology. They are regarded as important tools to stabilize the dynamic plant-pathogen-interaction as it exists under physiological conditions. - The main advantage of LT techniques versus conventional chemical fixation is seen in the maintenance of the hydration shell of molecules and macromolecular structures. This results in an improved fine structural preservation and in a superior retention of the antigenicity of proteins. - A well defined ultrastructure of small, fungal organisms and large biological samples such as plant material and as well as the plant-pathogen (fungus) infection sites are presented. The mesophyll tissue of Arabidopsis thaliana is characterized by homogeneously structured cytoplasm closely attached to the cell wall. From analyses of the compatible interaction between Erysiphe graminis f. sp. hordei on barley (Hordeum vulgare), various steps in the infection sequence can be identified. Infection sites of powdery mildew on primary leaves of barley are analysed with regard to the fine structural preservation of the haustoria. The presentation s focussed on the ultrastructure of the extrahaustorial matrix and the extrahaustorial membrane. - The integration of improved cellular preservation with a molecular analysis of the infected host cell is achieved by the application of secondary probing techniques, i.e. immunocytochemistry. Recent data on the characterization of freeze substituted powdery mildew and urst infected plant tissue by immunogold methodology are described with special emphasis on the localization of THRGP-like (threonine-hydrxyproline-rich glycoprotein) epitopes. Infection sites of powdery mildew on barley, stem rust as well as leaf rust (Puccinia recondita) on primary leaves of wheat were probed with a polyclonal antiserum to maize THRGP. Cross-reactivity with the anti-THRGP antiserum was observed over the extrahaustorial matrix of the both compatible and incompatible plant-pathogen interactions. The highly localized accumulation of THRGP-like epitopes at the extrahaustorial host-pathogen interface suggests the involvement of structural, interfacial proteins during the infection of monocotyledonous plants by obligate, biotrophic fungi.

  • PDF

In Vivo Antifungal Activities of 57 Plant Extracts Against Six Plant Pathogenic Fungi

  • Choi, Gyung-Ja;Jang, Kyoung-Soo;Kim, Jin-Seok;Lee, Seon-Woo;Cho, Jun-Young;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.184-191
    • /
    • 2004
  • Methanol extracts of fresh materials of 57 plants were screened for in vivo antifungal activity against Magna-porthe grisea, Corticium sasaki, Botrytis cinerea, Phyto-phthora infestans, Puccinia recondita, and Blumeria graminis f. sp. hordei. Among them, seven plant extracts showed disease-control efficacy of more than 90% against at least one of six plant diseases. None of the plant extracts was highly active against tomato gray mold. The methanol extracts of Chloranthus japonicus (roots) (CjR) and Paulownia coreana (stems) (PcS) displayed the highest antifungal activity; the CjR extract controlled the development of rice blast, rice sheath blight, and wheat leaf rust more than 90%, and tomato gray mold and tomato late blight more than 80%. The PcS extract displayed control values of more than 90 % against rice blast, wheat leaf rust, and barley powdery mildew and more than 80% against tomato gray mold. The extract of PcS also had a curative activity against rice sheath blight and that of CjR had a little curative activity against rice blast. On the other hand, the extract of Rumex acetocella roots reduced specifically the development of barley powdery mildew. Further studies on the characterization of antifungal substances in antifungal plant extracts are underway and their disease-control efficacy should be examined under greenhouse and field conditions.

Isolation and characterization of an antifungal substance from Burkholderia cepacia, an endophytic bacteria obtained from roots of cucumber.

  • Park, J.H.;Park, G.J.;Lee, S.W;Jang, K.S.;Park, Y.H.;Chung, Y.R.;Cho, K.Y.;Kim, J.C.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.95.2-96
    • /
    • 2003
  • In order to develop a new microbial fungicide for the control of vegetable diseases using endophytic bacteria, a total of 260 bacterial strains were isolated from fresh tissues of 5 plant species. After they were cultured in broth media, their antifungal activities were screened by in vivo bioassays against Botrytis cinerea(tomato gray mold), Pythium ultimum(cucumber damping-off), Phytopkhora infestans(tomato late blight), Colletotrichum orbiculare(cucumber anthracnose), and Blumeria graminis f. sp. hordei(barley powdery mildew). As the results of screening, 38 bacterial strains showed potent antifungal activities against at least one of 5 plant pathogens. A bacterial strain EB072 displayed potent disease control activities against 3 plant diseases. Among the bacterial strains with a potent antifungal activity against cucunlber anthracnose, three bacterial strains, EB054, EB151 and EB215, also displayed a potent in vitro antifungal activity against C. acutatum, a fungal agent causing pepper anthracnose. A bacterial strain EB215 obtained from roots of cucumber was identified as Burkholderia cepacia based on its physiological and biochemical characteristics and 165 rRNA gene sequence. An antifungal substance was isolated from the liquid cultures of B. cepacia EB215 strain by ethyl acetate partitioning, repeated silica gel column chromatography, and invitro bioassay, Its structural determination is in progress by various instrumental analyses.

  • PDF

In vivo Antifungal Activity Against Various Plant Pathogenic Fungi of Curcuminoids Isolated from the Rhizomes of Curcuma longa

  • Cho, Jun-Young;Choi, Gyung-Ja;Lee, Seon-Woo;Lim, He-Kyoung;Jang, Kyung-Soo;Lim, Chi-Hwan;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.22 no.1
    • /
    • pp.94-96
    • /
    • 2006
  • In a search for plant extracts with potent in vivo antifungal activity against various plant pathogenic fungi, the methanol extract of the Curcuma longa rhizomes effectively controlled the development of rice blast catised by Magnaporthe grisea and tomato late blight caused by Phytophthora infestans. Three curcuminoids such as curcumin, demethoxycurcumin, and bisdemethoxycurcumin were purified from the methanol extract of C. longa rhizomes as antifungal principles. Among the three curcuminoids, demethoxycurcumin was the most active to both rice blast and tomato late blight, followed in order by curcumin and bisdemethoxycurcumin. However, they all exhibited no or little in vivo antifungal activity against other fungal pathogens causing rice sheath blight (Corticium sasaki), tomato gray mold (Botrytis cinerea), wheat leaf rust (Puccinia recondita), or barley powdery mildew (Blumeria graminis f. sp. hordel).

Griseofulvin from Xylaria sp. Strain F0010, an Endophytic Fungus of Abies holophylla and its Antifungal Activity Against Plant Pathogenic Fungi

  • PARK, JOONG-HYEOP;CHOI, GYUNG-JA;LEE, SEON-WOO;LEE, HYANG-BURM;KIM, KYOUNG-MO;JUNG, HACK-SUNG;JANG, KYOUNG-SOO;CHO, KWANG-YUN;KIM, JIN-CHEOL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.112-117
    • /
    • 2005
  • Abstract Griseofulvin has been used as an antifungal antibiotic for the treatment of mycotic diseases of humans and veterinary animals. The purpose of this work was to identify a griseofulvin-producing endophytic fungus from Abies holophylla and evaluate its in vivo antifungal activity against plant pathogenic fungi. Based on nuclear ribosomal ITS1-5.8SITS2 sequence analysis, the fungus was identified and labeled as Xylaria sp. F0010. Two antifungal substances were purified from liquid cultures of Xylaria sp. F0010, and their chemical identities were determined to be griseofulvin and dechlorogriseofulvin through mass and NMR spectral analyses. Compared to dechlorogriseofulvin, griseofulvin showed high in vivo and in vitro antifungal activity, and effectively controlled the development of rice blast (Magnaporthe grisea), rice sheath blight (Corticium sasaki), wheat leaf rust (Puccinia recondita), and barley powdery mildew (Blumeria graminis f. sp. hordei), at doses of 50 to 150 ${\mu}$g/ml, depending on the disease. This is the first report on the production of griseofulvin and dechlorogriseofulvin by Xylaria species.