Browse > Article
http://dx.doi.org/10.5423/PPJ.2010.26.4.360

Antifungal Activity of Lower Alkyl Fatty Acid Esters against Powdery Mildews  

Choi, Gyung-Ja (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology)
Jang, Kyoung-Soo (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology)
Choi, Yong-Ho (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology)
Yu, Ju-Hyun (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology)
Kim, Jin-Cheol (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology)
Publication Information
The Plant Pathology Journal / v.26, no.4, 2010 , pp. 360-366 More about this Journal
Abstract
In the course of a searhing environmental friendly antifungal compounds, we found that mixture of methyl esters of fatty acids obtained from soybean oil had potent control efficacy against barley powdery mildew (Blumeria graminis f. sp. hordei). In this study, ten alkyl fatty acid esters (AFAEs) were tested for in vivo antifungal activity against five plant diseases such as rice blast, rice sheath blight, tomato gray mold, tomato late blight and barley powdery mildew. Some AFAEs showed the most control efficacy against barley powdery mildew among the tested plant diseases. By 5-hr protective and 1-day curative applications, six AFAEs ($3,000\;{\mu}g/ml$), including methyl and ethyl palmitates, methyl and ethyl oleates, methyl linoleate, and methyl linolenate demonstrated both curative and protective activities against barley powdery mildew. In contrary, methyl laurate strongly controlled the development of powdery mildew on barley plants by curative treatment at a concentration of $333\;{\mu}g/ml$, but did not show protective activity even at $3,000\;{\mu}g/ml$. Under greenhouse conditions, the seven AFAEs ($1,000\;{\mu}g/ml$) except for methyl and ethyl stearates, and methyl caprylate also effectively controlled cucumber powdery mildew caused by Podosphaera xanthii. Among them, methyl and ethyl palmitates ($333\;{\mu}g/ml$) represented the most control activity of more than 68% against the disease. The results are the first report on the antifungal activity of methyl and ethyl esters of fatty acids against plant pathogenic fungi.
Keywords
barley; Blumeria graminis f. sp. hordei; control efficacy; cucumber; Podosphaera xanthii;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Prithiviraj, B., Singh, U. P., Singh, K. P. and Plank-Schumacher, K. 1998. Field evaluation of ajoene, a constitutent of garlic (Allium sativum), and neemazal, a product of neem (Azadirachta indica), for the control of powdery mildew (Erysiphe pisi) of pea (Pisum sativum). J. Plant Dis. Prot. 105:274-278.
2 Savage, S. D., Evans, S. L., Haygood, R. A. and Zorner, P. S. 2000. Fatty acid based compositions for the control of established plant infections. United States Patent 6,136,856.
3 Schepers, H. T. A. M. 1983. Decreased sensitivity of Sphaerotheca fuliginea to fungicides which inhibit ergosterol biosynthesis. Neth. J. Plant Pathol. 89:185-187.   DOI
4 Schroedder, W. T. and Providenti, R. 1969. Resistance to benomyl in powdery mildew in cucurbits. Plant Dis. Reptr. 53:271-275.
5 Singh, U. P., Prithiviraj, B., Wagner, K. G. and Plank-Schumacher, K. 1995. Effect of ajoene, a constitute of garlic (Allium sativum), on powdery mildew (Erysiphe pisi) of pea (Pisum sativum). J. Plant Dis. Prot. 102:399-406.
6 Vargas, J. M. Jr. 1973. A benzimidazole resistant strain of Erysiphe graminis. Phytopathology 63:1366-1368.   DOI
7 Hou, C. T. and Forman III, R. J. 2000. Growth inhibition of plant pathogenic fungi by hydroxy fatty acids. J. Ind. Microbiol. Biotechnol. 24:275-276.   DOI
8 Ishii, H., Fraaije, B. A., Sugiyama, T., Noguchi, K., Nishimura, K., Takeda, T., Amano, T. and Hollomon, D. W. 2001. Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew. Phytopathology 91:1166-1171.   DOI   ScienceOn
9 Jang, K. S., Kim, H. T., Yoo, J. H., Choi, G. J. and Kim, J.-C. 2001. Controlling effect of several surfactants on barley powdery mildew caused by Erysiphe graminis f. sp. hordei. Kor. J. Pestic. Sci. 5:51-57 (in Korean).
10 Kabara, J. J., Swieczkowski, D. M., Coney, A. J. and Truant, J. P. 1972. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Ag. Chemother. 2:23-28.   DOI   ScienceOn
11 Kabara, J. J. 1984. Antimicrobial agents derived from fatty acids. J. Am. Oil Chem. Soc. 61:397-403.   DOI
12 Kajikawa, A. T., Watanabe, T., Akutsu, K., Ko, K. and Misato, T. 1984. Effect of cationic surfactants on powdery mildew of cucumber. J. Pesticide Sci. 9:763-768.   DOI
13 Kim, J.-C., Choi, G. J., Park, J.-H., Kim, H. T. and Cho, K. Y. 2001. Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Manag. Sci. 57:554-559.   DOI   ScienceOn
14 Kim, J.-C., Choi, G. J., Lee, S.-W., Kim, J.-S., Chung, K. Y. and Cho, K. Y. 2004. Screening extracts of Achyranthes japonica and Rumex crispus for activity against various plant pathogenic fungi and control of powdery mildew. Pest Manag. Sci. 60:803-808.   DOI   ScienceOn
15 MacGrath, M. T. 1996. Successful management of powdery mildew in pumpkin with disease threshold-based fungicide programs. Plant Dis. 80:910-916.   DOI   ScienceOn
16 McGrath, M. T. and Shishkoff, N. 1999. Evaluation of biocompatible products for managing cucurbit powdery mildew. Crop Prot. 18:471-478.   DOI   ScienceOn
17 Choi, N. H., Choi, G. J., Min, B.-S., Jang, K. S., Choi, Y. H., Kang, M. S., Park, M. S., Choi, J. E., Bae, B. K. and Kim, J.- C. 2009. Effects of neolignans from the stem bark of Magnolia obovata on plant pathogenic fungi. J. Appl. Microbiol. 106: 2057-2063.   DOI   ScienceOn
18 Choi, G. J., Yu, J. H., Jang, K. S., Kim, H. T., Kim, J.-C. and Cho, K. Y. 2004. In vivo antifungal activities of surfactants against tomato late blight, red pepper blight, and cucumber downy mildew. J. Korean Soc. Appl. Biol. Chem. 47:339-343.   과학기술학회마을
19 De Waard, M. A., Kipp, E. M. C., Horn, N. M. V. and Van Nistelrooy, J. G. M. 1986. Variation in sensitivity to fungicides which inhibit ergosterol biosynthesis in wheat powdery mildew. Neth. J. Plant Pathol. 92:21-32.   DOI
20 Copping, L. G. and Menn, J. J. 2000. Biopesticides: a review of their action, applications and efficacy. Pest Manag. Sci. 56:651-676.   DOI   ScienceOn
21 Dik, A. J. and Van Der Staay, M. 1995. The effect of Milsana on cucumber powdery mildew under Dutch conditions. Med. Fac. Landbouww Univ. Gent. 59:1027-1034.
22 Fernandez-Ortuno, D., Perez-Garcia, A., Lopez-Ruiz, F., Romero, D., de Vicente A. and Tores, J. A. 2006. Occurrence and distribution of resistance to QoI fungicides in populations of Podosphaera fusca in south central Spain. Eur. J. Plant Pathol. 115:215-222.   DOI   ScienceOn
23 Fletcher, J. S. and Wolfe, M. S. 1981. Insensitivity of Erysiphe graminis f. sp. hordei to triadimefon, triadimenol and other fungicides. Proc. Brighton Crop Prot. Conf., Pests & Dis. 633-640.
24 Frick, E. L. and Burchill, R. T. 1972. Eradication of apple powdery mildew from infected buds. Plant Dis. Reptr. 56:770-772.
25 Herger, G. and Klingauf, F. 1990. Control of powdery mildew fungi with extracts of the giant knotweed, Reynoutria sachalinensis (Polygonaceae). Med. Fac. Landbouww Rijksuniv. Gent. 55:1007-1014.
26 Agrios, G. N. 2005. Plant diseases caused by fungi. In: Plant Pathology. pp. 385-614. Academic Press, New York.
27 Chase, A. R. and Osborne, L. S. 1983. Influence of an insecticidal soap on several foliar diseases of foliage plants. Plant Dis. 67:1021-1023.   DOI
28 Benyagoub, M., Bel Rhlid, R. and Belanger, R. R. 1996a. Purification and characterization of new fatty acids with antibiotic activity produced by Sporothrix flocculosa. J. Chem. Ecol. 22: 405-413.   DOI   ScienceOn
29 Benyagoub, M., Bel Rhlid, R. and Belanger, R. R. 1996b. Influence of a subinhibitory dose of antifungal fatty acids from Sporothrix flocculosa on cellular lipid composition in fungi. Lipids 31:1077-1082.   DOI
30 British Crop Protection Council (BCPC). 2001. The Biopesticide Manual, 2nd edition. ed. by L. G. Copping, pp. 180-181, Surrey, UK.
31 Cho, J. Y., Choi, G. J., Son, S. W., Jang, K. S., Lim, H. K., Lee, S. O., Cho, K. Y. and Kim, J.-C. 2007. Isolation and antifungal activity of lignans from Myristica fragrans against various plant pathogenic fungi. Pest Manag. Sci. 63:935-940.   DOI   ScienceOn
32 Cho, K. Y., Choi, G. J., Kim J.-C., Jang, K. S., Lim, H. K., Son, J.- H., Choi, E.-S. and Lee, E.-S. 2007. Composition for protecting plant diseases comprising alkyl fatty acid ester. Republic of Korea Patent 0,700,504.
33 Choi, G. J., Kim, J.-C., Jang, K. S., Lim, H. K., Park, I.-K., Shin, S. C. and Cho, K. Y. 2006. In vivo antifungal activities of 67 plant fruit extracts against six plant pathogenic fungi. J. Microbiol. Biotechnol. 16:491-495.
34 Pasini, C., D’Aquila, F., Curir, P. and Gullino, M. L. 1997. Effectiveness of antifungal compounds against rose powdery mildew (Sphaerotheca pannosa var. rosae) in glasshouses. Crop Prot. 16:251-256.   DOI   ScienceOn
35 Wilcox, W. F., Burr, J. A., Riegel, D. G., Wong, F. P. 2003. Practical resistance to QoI fungicides in New York populations of Uncinula necator associated with quantitative shifts in pathogen sensitivities. Phytopathology 93:S90.
36 McGrath, M. T. and Shishkoff, N. 2003. First report of the cucurbit powdery mildew fungus (Podosphaera xanthii) resistant to strobilurin fungicides in United States. Plant Dis. 87:1007.
37 Northover, J. and Schneider, K. E. 1993. Activity of plant oils on diseases caused by Podosphaera leucotricha, Venturia inaequalis, and Albugo occidentalis. Plant Dis. 77:152-157.   DOI
38 Novak, A. F., Clark, G. C. and Dupuy, H. P. 1961. Antimicrobial activity of some ricinoleic and oleic acid derivatives. J. Am. Oil Chem. Soc. 38:321-324.   DOI