• 제목/요약/키워드: Bluffbody

검색결과 9건 처리시간 0.019초

랜덤와동해법에 의한 Bluffbody 비정상 유동장의 해석 (RVM Simulation of Unsteady Flows behind Bluffbody)

  • 강성모;김용모;류명석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.246-252
    • /
    • 1995
  • The transient incompressible flow behind the bluffbody is numerically simulated using the random vortex method(RVM). Based on the vorticity formulation of the unsteady Navier-Stokes equations, the Lagrangian approach with the random walk technique is employed to account for the transport processes of the vortex elements. The random walk procedure for the diffusion process has been validated against the exact solutions. The present simulation focuses on the transition flow regime where the recirculation zone behind the bluffbody becomes highly unsteady and large-scale vortex eddies are shed from the bluffbody wake. The unsteady flow structures and the mixing characteristics behind the bluffbody are discussed in details.

  • PDF

Bluffbody 비정상 유동장에 대한 수치해석 (Numerical simulation of unsteady flow field behind bluff body)

  • 류명석;강성모;김용모
    • 대한기계학회논문집B
    • /
    • 제21권3호
    • /
    • pp.350-357
    • /
    • 1997
  • The transient incompressible flow behind the axisymmetric bluff body is numerically simulated using the random vortex method(RVM). Based on the vorticity formulation of the unsteady Navier-Stokes equations, the Lagrangian approach with a stochastic simulation of diffusion using random walk technique is employed to account for the transport processes of the vortex elements. The numerical solutions for 2-dimensional recirculating flow behind a backward-facing step in the laminar range of Reynolds number are compared with experimental data. The present simulation focuses on the transitional flow regime where the recirculation zone behind the bluff body becomes highly unsteady and large-scale vortex eddies are shed from the bluff body wake due to intrinsic shear layer instabilities. The unsteady vertical flow structures and the mixing characteristics behind the bluff body are discussed in detail.

Eulerian Particle Flamelet Modeling for Combustion Processes of Bluff-Body Stabilized Methanol-Air Turbulent Nonpremixed Flames

  • Kim, Seong-Ku;Kang, Sung-Mo;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1459-1474
    • /
    • 2006
  • The present study is focused on the development of the RIF (Representative Interactive Flamelet) model which can overcome the shortcomings of conventional approach based on the steady flamelet library. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF model can effectively account for the detailed mechanisms of $NO_x$ formation including thermal NO path, prompt and nitrous $NO_x$ formation, and reburning process by hydrocarbon radical without any ad-hoc procedure. The flamelet time of RIFs within a stationary turbulent flame may be thought to be Lagrangian flight time. In context with the RIF approach, this study adopts the Eulerian Particle Flamelet Model (EPFM) with mutiple flamelets which can realistically account for the spatial inhomogeneity of scalar dissipation rate. In order to systematically evaluate the capability of Eulerian particle flamelet model to predict the precise flame structure and NO formation in the multi-dimensional elliptic flames, two methanol bluffbody flames with two different injection velocities are chosen as the validation cases. Numerical results suggest that the present EPFM model has the predicative capability to realistically capture the essential features of flame structure and $NO_x$ formation in the bluff-body stabilized flames.

양력 효과를 고려한 MIRA model 후미의 저저항 다목적 최적설계 (Multi-objective Optimal Design for the Low Drag Tail Shape of the MIRA model with the Lift Effect taken into account)

  • 이주희;이경헌;김준배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.565-568
    • /
    • 2002
  • In the flow analysis around a bluffbody such as road vehicles, drag reduction has been of the primary concern mainly due to the effect on fuel economy. To reduce the drag, which is mostly due to the pressure difference caused by the flow separation, the location of the separation and eddy sizes are controlled. However, less attention has been given to the effect of the lift. The effect of lift may cause the driving stability problem of the vehicle at high speed white heavy downward effect of lift together with the vehicle weight may require more power to drive the vehicle forward. It is considered worthwhile to pursue the optimal design of the low drag tail shape of the MIRA model while taking the lift effect into account, even though it is considered as a reference. To this end, a commercial multi-objective optimization code, FRONTIER, Is used together with the CFD code, STAR-CD. It is hoped that the results will provide more insight into the flow field around the bluffbody as transportation means.

  • PDF

난류확산연소에서의 conditional moment closure modeling (Conditional moment closure modeling in turbulent nonpremixed combustion)

  • 허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.24-32
    • /
    • 2000
  • A brief introduction is given on the conditional moment closure model for turbulent nonpremixed combustion. It is based on the transport equations derived through a rigorous mathematical procedure for the conditionally averaged quantities and appropriate modeling forms for conditional scalar dissipation rate, conditional mean velocity and reaction rate. Examples are given for prediction of NO and OH in bluffbody flames, soot distribution in jet flames and autoignition of a methane/ethane jet to predict the ignition delay with respect to initial temperature, pressure and fuel composition. Conditional averaging may also be a powerful modeling concept in other approaches involved in turbulent combustion problems in various different regimes.

  • PDF

난류확산연소에서의 Conditional Moment Closure Modeling (Conditional Moment Closure Modeling in Turbulent Nonpremixed Combustion)

  • 허강열
    • 한국연소학회지
    • /
    • 제5권2호
    • /
    • pp.9-17
    • /
    • 2000
  • A brief introduction is given on the conditional moment closure model for turbulent nonpremixed combustion. It is based on the transport equations derived through a rigorous mathematical procedure for the conditionally averaged quantities and appropriate modeling forms for conditional scalar dissipation rate, conditional mean velocity and reaction rate. Examples are given for prediction of NO and OR in bluffbody flames, soot distribution in jet flames and autoignition of a methane/ethane jet to predict the ignition delay with respect to initial temperature, pressure and fuel composition. Conditional averaging may also be a powerful modeling concept in other approaches involved in turbulent combustion problems in various different regimes.

  • PDF

Aerodynamic Charasteristics of Tumbling-Rectangular-Flat Plate Under Free Flight

  • Shimizu, Kosuke;Funaki, Jiro;Hirata, Katsuya
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.353-356
    • /
    • 2004
  • When a body falls in fluid, the body often experiences autorotations, namely, various kind of rotating motions, such as tumbling, flat spin and coming. Tumbling is a rotating motion with an axis perpendicular to a falling direction. Tumbling is a very important phenomenon in aeronautical and space engineering, ballistics and meteorology. For example, when an satellite re-en-tries into the atomosphere, its body collapses into many fragments which are disperse in the wide range of field. Some fragments fall in tumbling motion. Then tumbling is useful to predict fragment's motion.(omitted)

  • PDF

가스터빈 연소기의 화염 불안정성에 관한 연구 (A study on the combustion instability in a bluffbody dump combustor)

  • 이병준
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.1022-1029
    • /
    • 1998
  • The relation of the inlet fuel distribution, velocity, and overall equivalence ratio to the stability of a lean burning no-swirl dump combustor was examined. Premixed or partially premixed natural gas was introduced into the air stream, which flowed to the dump region through an annular inlet pipe. Inlet air was preheated upto 400 deg.C. Combustion instability was observed to occur at higher value of equivalence ratio (> 0.6) as the degree of unpremixedness was increased. Instabilities exhibited a dominant frequency of ~ 500 Hz, which corresponded to a half wave mode of combustor. CH chemiluminescence and pressure fluctuations were in-phase when combustion instabilities occurred. Acetone LIF images revealed that there was a strong fuel concentration gradient across the inlet annulus. Phase resolved OH LIF images showed that inlet fuel distribution was affected by the combustion instabilities.