• 제목/요약/키워드: Blue-shift

검색결과 256건 처리시간 0.038초

Simulated Moving Bed Chromatography의 시각적 설명 (Visual Demonstration of Simulated Moving Bed)

  • 오난숙;이종호;김진일;구윤모
    • Korean Chemical Engineering Research
    • /
    • 제43권3호
    • /
    • pp.360-365
    • /
    • 2005
  • SMB는 연속 크로마토그래피 공정으로써 회분식 크로마토그래피보다 이동상의 소비를 줄이고 높은 농도, 높은 수율의 생산성의 장점을 가지고 있다. 그러나 운전상의 복잡성 때문에 이 공정을 이해하기 어렵다. 본 실험에서는 서로 다른 색깔을 지닌 두 물질의 분리를 시도함으로써 공정의 이해를 용이하게 하였다. 실험에서 사용된 물질은 Blue dextran과 Orange G로서 각각 파란색과 오렌지 색을 띤다. 실험은 4개의 존으로 구성된 SMB로써 zone VI에서 zone I으로 재순환 되지 않는 열린 루프계가 적용되었다. 운전 조건은 Standing wave design를 이용하였으며 extract와 raffinate에서 높은 순도와 수율을 가질 수 있도록 디자인하였다. 단일 칼럼을 이용한 실험을 통해서 여러 유량에서 비선형 흡착 평형식과 실험식으로부터 물질전달계수를 얻었다. Extract와 raffinate의 농도분포 곡선은 모사 결과와 거의 일치하였다. Extract와 raffinate의 순도는 99.49%와 98.89%이며 두 물질의 수율은 모두 98%였다.

흰구름버섯(Coriolus hirsutus)에 의한 방향족 염료의 탈색 (Decolorization of Aromatic Dyes by White Rot Fungus Coriolus hirsutus)

  • 송연홍;최철민;김창진;신광수
    • 미생물학회지
    • /
    • 제33권4호
    • /
    • pp.252-256
    • /
    • 1997
  • 담자균류 백색부후균의 일종인 흰구름버섯(Coriolus hirsutus)을 실험균주로 하여 수종의 난분해성 방향족염료의 분해능을 측정하였다. 사용된 4종류의 염료 중, triphenyl methane 염료인 bromophenol blue가 탈색율 95% 이상으로 가장 잘 탈색되었으며, Congo red와 Poly R-478은 이보다는 낮은 57%, 55%가 탈색되었다. 그러나, heterocyclic 염료인 methylene blue는 본 균주에 의해 거의 탈색되지 않았으며, UV-visible spectrum상에서의 심색성 이동만 관찰되었다. 세포외 laccase와 peroxidase의 활성은 각 염료의 탈색율과 비례하여 나타났으며, 최대 활성 또한 최대 탈색시기에 관찰되었다. 효소의 활성 염색시 모든 염료의 탈색배지에서 공통적인 laccase와 peroxidase의 활성 띠가 관찰되었다. 이러한 결과로 볼 때, 세포외 laccase와 peroxidase가 난분해성 염료의 탈색에 중요한 역할을 할 것으로 판단된다.

  • PDF

Optical and Dielectric Properties of Reduced SrTiO3 Single Crystals

  • Kang, Bong-Hoon
    • 한국세라믹학회지
    • /
    • 제48권4호
    • /
    • pp.278-281
    • /
    • 2011
  • The optical band gap energy for $SrTiO_3$ by reduction at high temperature was 3.15 eV. The reflectivity of reduced $SrTiO_3$ single crystals showed little variation, however, the reflectivity by the reduction condition had no effect. For the phonon mode at about 790 $cm^{-1}$, a blue-shift took place upon $N_2$ reduction and the decreased. However, a red-shift took place upon a $H_2-N_2$ reduction and the increased at the same phonon mode. With decreasing temperature the dielectric constant decreased rapidly. The thermal activation energies were 0.92-1.02 eV.

Fluorescent white organic light-emitting diode structures with dye doped hole transporting layer

  • Galbadrakh, R.;Bang, H.S.;Baek, H.I.;Lee, C.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1407-1410
    • /
    • 2007
  • This work reports on three primary color fluorescent white organic light emitting diode (WOLED) with simple device structure where only a part of the hole transporting layer was doped with dye. The maximum luminance of the device reaches $35000\;cd/m^2$ at a drive voltage below 11V and external quantum efficiency of the device is above 1% in the wide range of luminance from 10 to $35000\;cd/m^2$ and reaches its highest 1.6% at $500\;cd/m^2$. The chromaticity coordinate shift of the device is negligible in this wide range of luminance. The blue shift of emission color with an increase of current density was attributed to the narrowing of recombination zone width with raise of current density.

  • PDF

Optical Excitation and Emission Spectra of YNbO4 : Eu3+

  • Lee, Eun-Young;Kim, Young-Jin
    • 전기화학회지
    • /
    • 제12권3호
    • /
    • pp.234-238
    • /
    • 2009
  • In the excitation spectra of $YNbO_4$ : $Eu^{3+}$, the charge transfer (CT) band around 270 nm due to $[NbO_4]^{3-}$$-Eu^{3+}$ interaction and sharp excitation peaks by f-f transition of $Eu^{3+}$ strongly appeared simultaneously. CT band depended on the structural properties of powders, showing the red-shift with increasing the crystallinity, while the f-f transition peaks were independent of the crystallinity. For $YNb_{1-x}Ta_xO_4$ : $Eu^{3+}$ (x = 0.05.0.2), $[TaO_4]^{3-}$. configuration was locally constructed, leading to the blue-shift in CT band and the decrease in the red emission intensity with increasing the Ta content.

Opto-Electrical Study of Sol-Gel Derived Antimony Doped Tin Oxide Films on Glass

  • De, Arijit
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권1호
    • /
    • pp.5-9
    • /
    • 2015
  • Optical and electrical properties were studied for Antimony doped tin oxide thin films from precursors containing 10, 30, 50, and 70 atom% of Sb deposited on bare sodalime silica, barrier layer coated sodalime silica, and pure silica glass substrates by sol-gel spinning technique. The direct band gaps were found to vary from 3.13~4.12 eV when measured in the hv range of 2.5~5.0 eV, and varied from 4.22~5.08 eV when measured in the range of 4.0~7.0 eV. Indirect band gap values were in the range of 2.35~3.11 eV. Blue shift of band gap with respect to bulk band gap and Moss-Burstein shift were observed. Physical thickness of the films decreased with the increase in % Sb. Resistivity of the films deposited on SLS substrate was in the order of $10^{-2}$ ohm cm. Sheet resistance of the films deposited on barrier layer coated soda lime silica glass substrate was found to be relatively less.

플라즈마 처리한 ZnO 나노막대의 광학적 특성 (The Optical Property of Plasma-treated ZnO Nanorods)

  • 조현민;유세기;조재원
    • 한국전기전자재료학회논문지
    • /
    • 제22권3호
    • /
    • pp.230-234
    • /
    • 2009
  • Hydrogen and Oxygen plasma treatments have been done on sonochemical grow ZnO nanorods by varying treatment temperature and time, The changes(position and intensity) in ultraviolet(UV) peaks and green peaks of photoluminescence(PL) spectroscopy have been measured, Experimental results showed; i) in the case of hydrogen plasma treatment, the blue shift of UV peak and the increase of PL intensity of the UV peak were observed as the increase of the process time and temperature, ii) in the case of oxygen plasma treatment, the red shift of green peak was observed and the ratio of $I_{Green}/I_{UV}$ was also increased, as the increase of the process time and the temperature.

Optical Properties of Long Wave Infrared Spoof Plasmon using Hexagonal Periodic Silver Hole Arrays

  • Lee, Byungwoo;Kwak, Hoe Min;Kim, Ha Sul
    • Applied Science and Convergence Technology
    • /
    • 제25권2호
    • /
    • pp.42-45
    • /
    • 2016
  • A two-dimensional metal hole array (2DMHA) structure is fabricated by conventional photo-lithography and electron beam evaporation. The transmittance of the 2DMHA is measured at long wave infrared (LWIR) wavelengths (${\lambda}{\sim}10$ to $24{\mu}m$). The 2DMHA sample shows transmittance of 70 and 67% at $15.4{\mu}m$ due to plasmonic resonance with perforated silver and gold thin films, respectively, under surface normal illumination at LWIR wavelengths. The measured infrared spectrum is separated into two peaks when the size of the hole becomes larger than a half-pitch of the hole array. Six degenerated plasmon modes (1,0) at the metal/Si surface split to three modes at an incident beam angle of $45^{\circ}$ with respect to the surface normal direction, and wavelength shifts of the transmitted spectrum are observed in a red shift and blue shift at the same time.

금 미세 입자에 의한 그래핀 광학 특성 변화 (Gold Nanoparticle Optical Effect on Graphene)

  • 박병호;임주환;전성찬
    • 정보저장시스템학회논문집
    • /
    • 제9권1호
    • /
    • pp.1-4
    • /
    • 2013
  • Graphene and Graphene oxide have intense interest in fields such as physics, chemistry, and materials science, among others. They are the promising material for solving the current limitation that organics have barely luminescence. We observed variation of photoluminescence on graphene oxide based solution with Gold nanoparticle. Gold nanoparticles lead to shift the peak wavelength of graphene oxide and to enhance the photoluminescence intensity totally. This shows the possibility that control the luminescence property of graphene oxide by adding gold nanoparticle.

ZnO 나노막대의 표면이 광학적 특성에 미치는 영향 (The Effect of the ZnO Nanorod Surface on the Optical Property)

  • 조현민;이석주;조재원
    • 한국전기전자재료학회논문지
    • /
    • 제23권2호
    • /
    • pp.93-97
    • /
    • 2010
  • We have studied the effect of the chemical composition of the ZnO nanorod surface on the optical characteristics. The surface was treated with H- and O-plasma at different surface temperatures. The chemical composition of the surface of the ZnO nanorod, being investigated by Auger Electron Spectroscopy(AES), was related to the Photoluminescence(PL) data reported in our previous results. The AES showed the opposite results for the $H_2$ and $O_2$ plasma treatments. The ratio of Zn to O on the surface of the ZnO nanorod increased in the case of $H_2$ plasma, while the composition rate of O increased after $O_2$ plasma treatment. The AES results seems to be correlated to the shift in PL peaks. The increase in the composition rate of Zn on the surface of ZnO nanorod is considered to cause the blue shift of the UV peak. On the contrary, the relative increase of O is considered to cause the red shift in PL peaks.