• Title/Summary/Keyword: Blue-emitting phosphor

Search Result 88, Processing Time 0.026 seconds

Effect of Lu3Al5O12:Ce3+ and (Sr,Ca)AlSiN3:Eu2+ Phosphor Content on Glass Conversion Lens for High-Power White LED

  • Lee, Hyo-Sung;Hwang, Jong Hee;Lim, Tae-Young;Kim, Jin-Ho;Jeon, Dae-Woo;Jung, Hyun-Suk;Lee, Mi Jai
    • 한국세라믹학회지
    • /
    • 제52권4호
    • /
    • pp.229-233
    • /
    • 2015
  • Currently, the majority of commercial white LEDs are phosphor converted LEDs made of a blue-emitting chip and YAG yellow phosphor dispersed in organic silicone. However, silicone in high-power devices results in long-term performance problems such as reacting with water, color transition, and shrinkage by heat. Additionally, yellow phosphor is not applicable to warm white LEDs that require a low CCT and high CRI. To solve these problems, mixing of green phosphor, red phosphor and glass, which are stable in high temperatures, is common a production method for high-power warm white LEDs. In this study, we fabricated conversion lenses with LUAG green phosphor, SCASN red phosphor and low-softening point glass for high-power warm white LEDs. Conversion lenses can be well controlled through the phosphor content and heat treatment temperature. Therefore, when the green phosphor content was increased, the CRI and luminance efficiency gradually intensified. Moreover, using high heat treatment temperatures, the fabricated conversion lenses had a high CRI and low luminance efficiency. Thus, the fabricated conversion lenses with green and red phosphor below 90 wt% and 10 wt% with a sintering temperature of $500^{\circ}C$ had the best optical properties. The measured values for the CCT, CRI and luminance efficiency were 3200 K, 80, and 85 lm/w.

LED용Mg2+·Ba2+Co-Doped Sr2SiO4:Eu 노란색 형광체의 발광특성 (Luminescence Characteristics of Mg2+·Ba2+ Co-Doped Sr2SiO4:Eu Yellow Phosphor for Light Emitting Diodes)

  • 최경재;지순덕;김창해;이상혁;김호건
    • 한국세라믹학회지
    • /
    • 제44권3호
    • /
    • pp.147-151
    • /
    • 2007
  • An improvement for the efficiency of the $Sr_{2}SiO_{4}:Eu$ yellow phosphor under the $450{\sim}470\;nm$ excitation range have been achieved by adding the co-doping element ($Mg^{2+}\;and\;Ba^{2+}$) in the host. White LEDs were fabricated through an integration of an blue (InGaN) chip (${\lambda}_{cm}=450\;nm$) and a blend of two phosphors ($Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor) in a single package. The InGaN-based two phosphor blends ($Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor) LEDs showed three bands at 450 nm, 550 nm and 640 nm, respectively. The 450 nm emission band was due to a radiative recombination from an InGaN active layer. This 450 nm emission was used as an optical transition of the $Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor. As a consequence of a preparation of white LEDs using the $Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor yellow phosphor and CaS:Eu red phosphor, the highest luminescence efficiency was obtained at the 0.03 mol $Ba^{2+}$ concentration. At this time, the white LEDs showed the CCT (5300 K), CRI (89.9) and luminous efficacy (17.34 lm/W).

Preparation and Photoluminescent Properties of Ca2PO4Cl Activated by Divalent Europium

  • Park, In Yong
    • 마이크로전자및패키징학회지
    • /
    • 제23권4호
    • /
    • pp.63-67
    • /
    • 2016
  • Divalent europium-activated $Ca_2PO_4Cl$ phosphor powders were prepared by a chemical synthetic method followed by heat treatment in reduced atmosphere, and the crystal structures, morphologies and photoluminescence properties of the powders were investigated by x-ray powder diffraction, scanning electron microscope and spectrometer. The effect of Ca/P mole ratio at the starting materials on the final products was evaluated. The optimized synthesis condition obtained in this study was Ca/P mole ratio of 2.0. The present phosphor materials had higher photoluminescence intensity and better color purity than the commercial blue phosphor powders, $(Ca,Ba,Sr)_{10}(PO_4)_6Cl_2:Eu^{2+}$. The result of excitation spectrum measurement indicated that the excitation efficiency of the synthesized powders was higher for the long-wavelength UV region than that of the commercial phosphor. It was thus concluded that the samples prepared in this study can be successfully applied for the light-emitting devices such as LED excited with long-wavelength UV light sources.

Blue-Emitting CaS:Pb Thin Film Electroluminescent Devices Fabricated by Controlled Atomic Layer Deposition

  • Yun, Sun-Jin;Kim, Yong-Shin;KoPark, Sang-Hee;Kang, Jung-Sook;Cho, Kyoung-Ik;Ma, Dong-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2000년도 제1회 학술대회 논문집
    • /
    • pp.149-150
    • /
    • 2000
  • Lead-doped calcium sulfide(CaS:Pb) thin film electroluminescent devices were deposited using atomic layer deposition(ALD). CaS:Pb is a very promising blue phosphor showing very high luminance and the color coordinate close to the blue of cathode ray tube. The luminance, $L_{25}$, of CaS:Pb(1.6 mol.%) EL device was higher than 80 $cd/cm^2$ at a driving frequency of 60Hz. The color coordinates of blue EL emission of CaS:Pb deposited by ALD are consistent with the Pb concentration ranging from approximately 0.5 to 3 mol.%.

  • PDF

Synthesis and photoluminescence of Ca3Si3O8F2: Ce4+, Eu3+, Tb3+ phosphor

  • Suresh, K.;PoornachandraRao, Nannapaneni V.;Murthy, K.V.R.
    • Advances in materials Research
    • /
    • 제3권4호
    • /
    • pp.227-232
    • /
    • 2014
  • $Ce^{4+}$, $Eu^{3+}$, $Tb^{3+}$ co-doped $Ca_3Si_3O_8F_2$ phosphor was synthesized via solid state reaction method using $CaF_2$, $CaCO_3$ and $SiO_2$ as raw materials for the host and $Eu_2O_3$, $CeO_2$, and $Tb_4O_7$ as activators. The luminescent properties of the phosphor was analysed by spectrofluorophotometer at room temperature. The effect of excitation wavelengths on the luminescent properties of the phosphor i.e. under near-ultraviolet (nUV) and visible excitations was investigated. The emission peaks of $Ce^{4+}$, $Eu^{3+}$, $Tb^{3+}$ co-doped $Ca_3Si_3O_8F_2$ phosphor lays at 480(blue band), 550(green band) and 611nm (red band) under 380nm excitation wavelength, attributed to the $Ce^{4+}$ ion, $Tb^{3+}$ ion and $Eu^{3+}$ ions respectively. The results reveal that the phosphor emits white light upon nUV (380nm) / visible (465nm) illumination, and a red light upon 395nm / 535nm illumination. RE ions doped $Ca_3Si_3O_8F_2$ is a promising white light phosphor for LEDs. The emission colours can be seen using Commission international de l'eclairage (CIE) co-ordinates. A single host phosphor emitting different colours under different excitations indicates that it is a potential phosphor having applications in many fields.

액상법을 이용한 구상의 Sr4Al14O25:Eu2+ 형광체의 합성 및 발광 특성 (Preparation and Luminescence Properties of Spherical Sr4Al14O25:Eu2+ Phosphor Particles by a Liquid Synthesis)

  • 이정;최성호;남산;정하균
    • 한국재료학회지
    • /
    • 제24권7호
    • /
    • pp.351-356
    • /
    • 2014
  • A spherical $Sr_4Al_{14}O_{25}:Eu^{2+}$ phosphor for use in white-light-emitting diodes was synthesized using a liquid-state reaction with two precipitation stages. For the formation of phosphor from a precursor, the calcination temperature was $1,100^{\circ}C$. The particle morphology of the phosphor was changed by controlling the processing conditions. The synthesized phosphor particles were spherical with a narrow size-distribution and had mono-dispersity. Upon excitation at 395 nm, the phosphor exhibited an emission band centered at 497 nm, corresponding to the $4f^65d{\rightarrow}4f^7$ electronic transitions of $Eu^{2+}$. The critical quenching-concentration of $Eu^{2+}$ in the synthesized $Sr_4Al_{14}O_{25}:Eu^{2+}$ phosphor was 5 mol%. A phosphor-converted LED was fabricated by the combination of the optimized spherical phosphor and a near-UV 390 nm LED chip. When this pc-LED was operated under various forward-bias currents at room temperature, the pc-LED exhibited a bright blue-green emission band, and high color-stability against changes in input power. Accordingly, the prepared spherical phosphor appears to be an excellent candidate for white LED applications.

키토산을 이용한 유기 발광 소자에 관한 연구 (A Sutdy on Organic Emission Device of Chitosan Used)

  • 정기택;강수정;김남기;노승용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1062-1065
    • /
    • 2004
  • The importance of display is becoming increasingly important due to the development of information and industry where it leads to diverse and abundant information in today's society. The demand and application range for FPD(Flat Panel Display), specifically represented by LCD(Liquid Crystal Display) and PDP(Plasma Display Panel), have been rapidly growing for its outstanding performance and convenience amongst many other forms of display. The current focus has been on OLED(Organic Light Emitting Diode) in the mobile form, which has just entered into mass production amid the different types of FPD. Many studies are being conducted in regards to device, vacuum evaporation, encapsulation, and drive circuits with the development of device as a matter of the utmost concern. This study develops a new type of light-emitting materials by synthesizing medical polymer organic chitosan and phosphor material CuS. Chitosan itself satisfies the Pool-Frenkel Effect, an I-V specific curve, with a thin film under $20{mu}m$, and demonstrates production possibility for a living body sensors solely with the thin film. Furthermore, it enables production possibility for EML of organic EL device(Emitting Layer) with liquid Green light emitting and Blue light emitting as a result of synthesis with phosphor material.

  • PDF

$CaS_{1-x}Se_x:Eu$ 형광체의 발광 특성 (Photoluminescence properties of $CaS_{1-x}Se_x:Eu$ phosphors)

  • 유은경;허영덕
    • 한국결정성장학회지
    • /
    • 제17권5호
    • /
    • pp.204-209
    • /
    • 2007
  • 형광체-변환 3파장 백색 발광 다이오드(LED)의 응용을 위하여 일련의 $CaS_{1-x}Se_x:Eu$ 형광체를 합성하였다. $CaS_{1-x}Se_x:Eu$의 구조와 발광 특성을 조사하였다. $CaS_{1-x}Se_x:Eu$ 형광체는 청색 발광 다이오드의 발광 파장인 455nm에서 강한 흡수가 있다. $Eu^{2+}$$4f^65d^1(T_{2g}){\rightarrow}4f^7(^8S_{7/2})$ 전이 때문에 CaS:Eu는 651nm에서 적색 발광 봉우리를 가지고 있다. $CaS_{1-x}Se_x:Eu$의 발광 봉우리는 Se이 증가함에 따라서 651nm에서 598nm으로 이동이 된다. $CaS_{1-x}Se_x:Eu$ 형광체는 청색 LED로 여기하면 가변 파장의 적색 발광을 하는 형광체로 사용될 수 있다. $SrGa_2S_4:Eu$$CaS_{0.50}Se_{0.50}:Eu$ 형광체를 청색 발광 다이오드에 도포하여 백색 발광 다이오드를 제작하였다.

고출력 백색 광원용 Y3Al5O12;Ce3+,Pr3+ 투명 세라믹 형광체의 광학특성 (Optical Properties of Y3Al5O12;Ce3+,Pr3+ Transparent Ceramic Phosphor for High Power White Lighting)

  • 강태욱;임석규;김종수;정용석
    • 한국재료학회지
    • /
    • 제29권2호
    • /
    • pp.116-120
    • /
    • 2019
  • We prepared $Y_3Al_5O_{12};Ce^{3+},Pr3^{+}$ transparent ceramic phosphor using a solid state reaction method. By XRD pattern analysis and SEM measurement, our phosphors reveal an Ia-3d(230) space group of cubic structure, and the transparent ceramic phosphor has a polycrystal state with some internal cracks and pores. In the Raman scattering measurement with an increasing temperature, lattice vibrations of the transparent ceramic phosphor decrease due to its more perfect crystal structure and symmetry. Thus, low phonon generation is possible at high temperature. Optical properties of the transparent ceramic phosphor have broader excitation spectra due to a large internal reflection. There is a wide emission band from the green to yellow region, and the red color emission between 610 nm and 640 nm is also observed. The red-yellow phosphor optical characteristics enable a high Color Rendering Index (CRI) in combination with blue emitting LED or LD. Due to its good thermal properties of low phonon generation at high temperature and a wide emission range for high CRI characteristics, the transparent ceramic phosphor is shown to be a good candidate for high power solid state white lighting.

LED용 Sr2Ga2S5:Eu2+ 황색 형광체의 합성 및 발광특성 (Synthesis and Luminescent Characteristics of Sr2Ga2S5:Eu2+ Yellow Phosphor for LEDs)

  • 김재명;박정규;김경남;이승재;김창해;장호겸
    • 대한화학회지
    • /
    • 제50권3호
    • /
    • pp.237-242
    • /
    • 2006
  • LED는 고휘도 청색 칩의 개발로 인해 단순표시소자로만 이용되던 것이 다양한 분야의 발광소자로 적용되기 시작하였다. 특히, 최근에 InGaN 칩과 황색 형광체(YAG:Ce3+)를 이용한 방법이 많이 연구되어지고 있다. 하지만 이 방법은 2 파장을 이용한 것으로 색연지수가 낮은 단점을 지니며, 황색의 YAG:Ce3+ 형광체 이외에 450~470 nm의 여기 영역에서 효율적으로 발광하는 형광체가 거의 없다. 따라서 본 연구에서는 장파장 영역의 여기 특징을 지닌 thiogallate 형광체의 합성을 시도하였다. 그 중에 가장 잘 알려진 SrGa2S4:Eu2+ 형광체의 모체를 변화시켜 Sr2Ga2S5:Eu2+ 형광체를 합성하였으며, 발광특성을 조사하였다. 그리고 무해성과 제조 공정의 단순화를 위하여, 황화물질과 5 % H2/95 % N2 혼합 기체를 CS2와 H2S 가스 대신에 사용하였다. 이렇게 합성되어진 형광체는 550 nm의 발광 중심을 가지는 황색 형광체로서 300~500 nm에 이르는 넓은 여기원을 통한 발광이 가능하다. 그리고 YAG:Ce3+ 형광체와 비교해 볼 때 강도 면에서 110 % 이상을 보이며, UV 영역의 여기적 특성을 이용해 UV LED에도 응용이 가능하다.