Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.2.116

Optical Properties of Y3Al5O12;Ce3+,Pr3+ Transparent Ceramic Phosphor for High Power White Lighting  

Kang, Taewook (Interdisciplinary Program of LED and Solid State Light Engineering, Pukyong National University)
Lim, Seokgyu (Dept. of Display Science and Engineering, Pukyong National University)
Kim, Jongsu (Dept. of Display Science and Engineering, Pukyong National University)
Jeong, Yongseok (Dept. of Display Science and Engineering, Pukyong National University)
Publication Information
Korean Journal of Materials Research / v.29, no.2, 2019 , pp. 116-120 More about this Journal
Abstract
We prepared $Y_3Al_5O_{12};Ce^{3+},Pr3^{+}$ transparent ceramic phosphor using a solid state reaction method. By XRD pattern analysis and SEM measurement, our phosphors reveal an Ia-3d(230) space group of cubic structure, and the transparent ceramic phosphor has a polycrystal state with some internal cracks and pores. In the Raman scattering measurement with an increasing temperature, lattice vibrations of the transparent ceramic phosphor decrease due to its more perfect crystal structure and symmetry. Thus, low phonon generation is possible at high temperature. Optical properties of the transparent ceramic phosphor have broader excitation spectra due to a large internal reflection. There is a wide emission band from the green to yellow region, and the red color emission between 610 nm and 640 nm is also observed. The red-yellow phosphor optical characteristics enable a high Color Rendering Index (CRI) in combination with blue emitting LED or LD. Due to its good thermal properties of low phonon generation at high temperature and a wide emission range for high CRI characteristics, the transparent ceramic phosphor is shown to be a good candidate for high power solid state white lighting.
Keywords
$Y_3Al_5O_{12}Ce^{3+},Pr3^{+}$ phosphor; transparent ceramic; high CRI;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett., 64, 1687 (1994).   DOI
2 R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys and R. O. Carlson, Phys. Rev. Lett., 9, 366 (1962).   DOI
3 Z. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Y. V. Zhilyaev, E. P. Morozov, E. L. Portnoi and V. G. Trofim, Sov. Phys. Semicond, 4, 1573 (1971).
4 I. Hayashi, M. B. Panish, P. W. Foy and S. Sumuski, Appl. Phys. Lett., 17, 109 (1970).   DOI
5 J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone and Y. Park, Jpn. J. Appl. Phys., 44, L649 (2005).   DOI
6 H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon and S. S. Kim, J. Lumin., 126, 371 (2007).   DOI
7 M. Sekita, H. Haneda and S. Shirasaki, J. Appl. Phys., 69, 3709 (1998).   DOI
8 K. Papagelis, G. Kanelis, S. Ves and G. A. Kourouklis, Phys. Status Solidi B, 233, 134 (2002).   DOI
9 G. F. Herrmann, J. J. Pearson, K. A. Wickersheim and R. A. Buchanan, J. Appl. Phys., 37, 1312 (1966).   DOI
10 L. T. Su, A.I. Tok, Y. Zhao, N. Ng and F. Y. Boey, J. Phys. Chem., 113, 5974 (2009).
11 G. Blasse, B. C. Grabmaier, Luminescent Materials, p. 25, Springer, Berlin, Germany, (1994).
12 R. L. Aggarwal, D. J. Ripin, J. R. Ochoa and T. Y. Fan, J. Appl. Phys., 98, 103514 (2005).   DOI