• Title/Summary/Keyword: Blue phase

Search Result 307, Processing Time 0.022 seconds

A facile chemical synthesis of a novel photo catalyst: SWCNT/titania nanocomposite

  • Paul, Rima;Kumbhakar, Pathik;Mitra, Apurba K.
    • Advances in nano research
    • /
    • v.1 no.2
    • /
    • pp.71-82
    • /
    • 2013
  • A simple chemical precipitation technique is reported for the synthesis of a hybrid nanostructure of single-wall carbon nanotubes (SWCNT) and titania ($TiO_2$) nanocrystals of average size 5 nm, which may be useful as a prominent photocatalytic material with improved functionality. The synthesized hybrid structure has been characterized by transmission electron microscopy (HRTEM), energy-dispersive X-ray analysis (EDAX), powder X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. It is clearly revealed that nearly monodispersed titania nanocrystals (anatase phase) of average size 5 nm decorate the surfaces of SWCNT bundles. The UV-vis absorption study shows a blue shift of 16 nm in the absorbance peak position of the composite material compared to the unmodified SWCNTs. The photoluminescence study shows a violet-blue emission in the range of 325-500 nm with a peak emission at 400 nm. The low temperature electrical transport property of the synthesized nanomaterial has been studied between 77-300 K. The DC conductivity shows semiconductor-like characteristics with conductivity increasing sharply with temperature in the range of 175-300 K. Such nanocomposites may find wide applications as improved photocatalyst due to transfer of photo-ejected electrons from $TiO_2$ to SWCNT, thus reducing recombination, with the SWCNT scaffold providing a firm and better positioning of the catalytic material.

Cadmium Sulphide Nanorods: Synthesis, Characterization and their Photocatalytic Activity

  • Giribabu, Krishnamoorthy;Suresh, Ranganathan;Manigandan, Ramadoss;Vijayaraj, Arunachalam;Prabu, Raju;Narayanan, Vengidusamy
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2910-2916
    • /
    • 2012
  • Cadmium sulphide (CdS) nanorods were prepared by a single precursor thermal decomposition (SPTD) method. The formation of CdS nanorods and their structure, morphology and elemental composition were studied by means of FT-IR, XRD, FE-SEM, HR-TEM and EDAX analysis. Photoluminescence (PL) and lifetime measurements were recorded to study the luminescence properties of the material. The PL spectrum of the CdS nanorods showed one broad peak and four shoulders and the cause for this emission was discussed. The PL emissions from the band edge and deep trap state of the CdS nanorods were studied by lifetime measurements. Further, the synthesized CdS nanorods showed an increase in efficiency of photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB). The increase in the photocatalytic activity was attributed to the mixed phase of the CdS nanorods.

Graphitic g-C3N4-WO3 Composite: Synthesis and Photocatalytic Properties

  • Doan, An Tran;Thi, Xuan Dieu Nguyen;Nguyen, Phi Hung;Thi, Viet Nga Nguyen;Kim, Sung Jin;Vo, Vien
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1794-1798
    • /
    • 2014
  • Graphitic g-$C_3N_4-WO_3$ composite was synthesized simply by decomposing melamine in the presence of $WO_3$ at $500^{\circ}C$. The obtained material was characterized by XRD, SEM, IR and XPS. The results showed that the as-prepared composite exhibits orthorhombic $WO_3$ phase coated by g-$C_3N_4$ and the g-$C_3N_4$ decomposed completely with N-doped $WO_3$ remaining at elevated calcination temperatures. The photocatalytic activity of the composite was evaluated by the photodegradation of methylene blue under visible light. An enhancement in photocatalytic activity for the graphitic g-$C_3N_4-WO_3$ composite compared to the conventional nitrogen-doped $WO_3$ was observed, which can be attributed to the presence of g-$C_3N_4$ in the material.

Synthesis and Luminescence Properties of a Cyan-blue Thiosilicate-based Phosphor $SrSi_2S_5:Eu^{2+}$

  • Nakamuraa, Masayoshi;Katoa, Hideki;Takatsuka, Yuji;Petrykinc, Valery;Tezuka, Satoko;Kakihana, Masato
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.135-139
    • /
    • 2010
  • A series of Sr-Si-S compounds was synthesized using an advanced chemical method in which the use of one solution-based process uniformly dispersed the $Eu^{2+}$ activators in the host crystals, to find new compositions that would suit phosphor applications. Particular focus was given to the Si-rich region. This led to the synthesis of a single-phase compound that showed an unknown X-ray diffraction pattern. This compound had a composition close to that of $SrSi_2S_5$. When this compound is activated with $Eu^{2+}$ ($SrSi_2S_5:Eu^{2+}$), it shows a cyan-blue emission with a main luminescence peak at 495 nm. This emission is excited by wavelengths of 250-440 nm and has a maximum excitation at 350 nm.

The effect of introduced method of titania and applied potential on the photoelectrocatalytic properties of CNT/TiO2 electrodes

  • Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • In this paper, three types of CNT/$TiO_2$ composite electrodes were prepared with different methods. The changes in XRD patterns showed that the Electrode A contained a mixed phase of anatase and rutile while the Electrode B and Electrode C contained a typical single and clear anatase crystal structure. From SEM micrographs, $TiO_2$ particles were adhered on the surface of the CNT network in the forms of small clusters. The results of chemical elemental analysis indicated that the main elements such as C, O and Ti were existed. The results demonstrated that the efficiency of photoelectrocatalytic (PEC) oxidation for methylene blue (MB) was higher than that of photocatalytic (PC) oxidation. There was a clear enhancement trend of the MB degradation using the prepared CNT/$TiO_2$ composite electrodes with an increase of applied potential. Finally, the prominent PEC activities of the CNT/$TiO_2$ composites could be attributed to combination effects of photo-degradation of $TiO_2$, electron assistant of CNT and function of applied potential.

Photocatalytic Properties of TiO2 According to Manufacturing Method (제조방법에 따른 TiO2의 광촉매 특성 분석)

  • Lee, Hong Joo;Park, Yu Gang;Lee, Seung Hwan;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.156-161
    • /
    • 2018
  • $TiO_2$ photocatalyst powders were prepared by chlorination method and sol-gel method. Specific surface area and crystalline (i.e., anatase and rutile) of the catalyst varied depending on manufacture conditions and method. TTIP-sol photocatalyst had higher methylene blue (MB) decomposition characteristics than photocatalyst from chlorination method and TBOT-sol. MB removal efficiency from aqueous solution with TTIP-sol photocatalyst was over 90%. Experimental results showed that the $TiO_2$ photocatalyst with a single anatase phase and a large specific surface area had high decomposition characteristics of organic materials.

Studies on the Preparation of Fermented Milk by Bifidobacterium longum and Lactobacillus acidophilus (Bifidobacterium longum 및 Lactobacillus acidophilus를 이용한 발효유 제조)

  • 김창한;전한수;정재흥
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.1
    • /
    • pp.71-75
    • /
    • 1990
  • Yoghurt was prepared with Bifidobacterium longum TK-100 and Lactobacillus acidophilus TK-2070. The prepared yoghurt showed the increase of the titratable acidity under cold storage condition. This was derived from the active L. acidophilus TK-2070 on the logarithmic phase rather than from the B. longumn TK-2070. B. longum TK-100 grew well in the facultative anaerobic condition as well as in the strict anaerobic condition. Reinforced clostridial agar medium with 0.1% aniline blue was tried for the differential viable cell counts in the mixed culture and in the yoghurt. B. longurn TK-2070 had the light gray, blue-dotted colonies of about 2 mm diameter. L. acidophilus TK-2070 had the light gray colonies of about 1 mm diameter.

  • PDF

Synthesis of NiO and TiO2 Combined SiC Matrix Nanocomposite and Its Photocatalytic MB Degradation

  • Zambaga, Otgonbayar;Jun Hyeok, Choi;Jo Eun, Kim;Byung Jin, Park;Won-Chun, Oh
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.458-465
    • /
    • 2022
  • Interest in the use of semiconductor-based photocatalyst materials for the degradation of organic pollutants in a liquid phase has grown, due to their excellent performance and response to the light source. Herein, we fabricated a NiO-SiC-TiO2 ternary structured photocatalyst which had reduced bandgap energy, with strong activation under UV-light irradiation. The synthesized samples were examined using XRD, SEM, EDX, TEM, DRS, EIS techniques and photocurrent measurement. The results confirmed that the two types of metal oxides were well bonded to the SiC fiber surface. The junction of the new photocatalyst exhibited a large number of photoexcited electrons and holes. The holes tended to oxidize the water and form a hydroxyl radical, which promoted the decomposition of methylene blue. The close contact between the 2D SiC fiber and metal oxide semiconductors expanded the scope of absorption wavelength, and enhanced the usability of the ternary photocatalyst for the degradation of methylene blue. Among three synthesized samples, the NiO-SiC-TiO2 showed the best photocatalytic effect, and was considered to have excellent photoelectron transfer due to the synergy effect between the metal oxide and SiC.

Synthesis of scheelite-type nanocolloidal particles by pulsed laser ablation in liquid and their size distribution analysis

  • Lee, Jung-Il;Shim, Kwang Bo;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.111-119
    • /
    • 2014
  • A novel pulsed laser ablation process in liquid was investigated to prepare scheelite-type ceramic [calcium tungstate ($CaWO_4$) and calcium molybdate ($CaMoO_4$)] nanocolloidal particles. The crystalline phase, particle morphology, particle size distribution, absorbance and optical band-gap were investigated. Stable colloidal suspensions consisting of well-dispersed $CaWO_4$ and $CaMoO_4$ nanoparticles with narrow size distribution could be obtained without any surfactant. Particle tracking analysis using optical microscope combined with image analysis was applied for a fast determination of particle size distribution in the prepared nanocolloidal suspensions. The mean nanoparticle size of $CaWO_4$ and $CaMoO_4$ colloidal nanoparticles were 16 nm and 30 nm, with the standard deviations of 2.1 and 5.2 nm, respectively. The optical absorption edges showed blue-shifted values about 60~70 nm than those of reported in bulk crystals. And also, the estimated optical energy band-gaps of $CaWO_4$ and $CaMoO_4$ colloidal particles were 5.2 and 4.7 eV. The observed band-gap widening and blue-shift of the optical absorbance could be ascribed to the quantum confinement effect due to the very small size of the $CaWO_4$ and $CaMoO_4$ nanocolloidal particles prepared by pulsed laser ablation in liquid.

Expression of a Recombinant Bacillus thuringiensis $\delta$-Endotoxin Fused with Enhanced Green Fluorescent Protein in Escherichia coli

  • Je, Yeon-Ho;Roh, Jong-Yul;Li, Ming-Shun;Chang, Jin-Hee;Shim, Hee-Jin;Jin, Byung-Rae;Boo, Kyung-Saeng
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.2
    • /
    • pp.145-149
    • /
    • 2004
  • The expression of a fusion protein comprised of the B. thuringiensis crystal protein, Cry1Ac, and enhanced green fluorescent protein (EGFP) in Escherichia coli XLl-blue was examined. Three recombinant plasmids were transformed into E. coli XL1-blue and named as ProAc/Ec, MuEGFP/Ec and ProMu-EGFP/Ec, respectively. All transformants were observed by light and fluorescence microscopy at mid-log phase. The expression in E. coli transformants, ProMu-EGFP/Ec and MuEGFP/Ec, exhibited bright enough fluorescence to be observed. Furthermore, ProMu-EGFP/Ec produced fluorescent inclusions, which may have been recombinant crystals between EGFP and Cry1Ac while MuEGFP/Ec expressed soluble EGFP in cell. In SDS-PAGE, ProAc/Ec had 130 kDa crystal protein band and MuEGFP/Ec had thick 27 kDa EGFP band. However, ProMu-EGFP/Ec had about 150 kDa fusion protein band. Accordingly, these results indicated that a fusion protein between the B. thuringiensis crystal protein and a foreign protein under the lacZ promoter was successfully expressed as granular structure in E. coli. It is suggested that the E. coli expression system by N-terminal fusion of B. thuringiensis crystal protein may be useful as excellent means for fusion expression and characterization of B. thuringiensis fusion crystal protein.