• 제목/요약/키워드: Blue host materials

Search Result 84, Processing Time 0.025 seconds

초음파 합성법을 이용한 이리듐계 인광 물질 합성과 합성된 인광 물질의 전계 발광 특성 분석 (Study on Electroluminescence of the Phosphorescent Iridium(III) Complex Prepared by Ultrasonic Wave)

  • 유홍정;정원근;전병희;김성현
    • Korean Chemical Engineering Research
    • /
    • 제49권3호
    • /
    • pp.325-329
    • /
    • 2011
  • 본 연구를 통해 최근 개발된 근자외선영역대에서 발광하는 이리듐 착물인 $Ir(pmb)_{3}$ (Iridium(III) Tris(1-phenyl-3-methylbenzimidazolin-2-ylidene-C,$C,C^{2'}$ ))의 합성 과정상에서 기존의 합성법과 동일한 발광 특성을 가지면서 더 효율적인 합성 방법을 제안하였다. 합성 과정에서 초음파가 투입되면서 용매에 녹지 않는 반응물의 파쇄 및 혼합을 돕고, 촉매의 활성을 향상시켜 이온 및 라디컬을 형성시키는 방법으로 최대 42.5% 합성 수율을 얻어 내었으며 이는 기존 방법 대비 약 4배 이상 향상된 결과이다. 이러한 초음파 합성법으로 합성된 $Ir(pmb)_{3}$은 이성질체 별로 405 nm(면이성질체) 412 nm(자오선이성질체)의 발광 피크를 보였으며 이중 좀더 효율이 높은 자오선이성질체를 사용하여 전계 발광 소자를 제작하였다. 밴드갭이 큰 $Ir(pmb)_{3}$에 적합한 호스트 물질을 UGH2, CBP, mCP 세가지 선정하여 전계발광소자를 제작하였으며, 그 중 mCP를 호스트 물질로 사용한 소자의 경우가 호스트물질과 인광물질사이의 에너지전달이 가장 효율적으로 일어나 가장 높은 휘도와 효율을 보였다.

유기 발광체의 에너지 준위 및 전자 상태 연구 (A Study on Energy Levels and Electron States of Organic Light-Emitting Materials)

  • 김영관;김영식;서지훈
    • 한국응용과학기술학회지
    • /
    • 제22권4호
    • /
    • pp.299-305
    • /
    • 2005
  • In this study, we designed color of tunable and high efficient organic materials using the quantum dynamics and the semi-empirical calculation, and applied this results to the fabrication of organic light-emitting diodes. Also we optimized the molecular structure of phosphorescent materials and the energy transfer from a host to a dye which makes organic light-emitting diodes improve. Using quantum dynamics method, the molecular structures of ligand only and the whole metal chelate were optimized, and these energy levels were calculated. From this test results, we could understand the emission mechanism of phosphors with various ligands as well as design the proper ligands reducing the T-T annihilation and the carrier lifetime. We also could design ligands with various colors using this test method.

A New Door for Molecular-Based Organic Electroluminescent Devices

  • Jou, Jwo-Huei;Wang, Wei-Ben;Hsu, Mao-Feng;Lai, Wen-Hsuan;Chen, Chin-Ti;Chin, Chih-Lung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.350-353
    • /
    • 2009
  • While the comparatively high MW would make the employed molecules extremely difficult to vacuum-evaporate, and result in poor device performance, the wet-process has been proven to be quite effective and convenient as usual to the fabrication of high-efficiency OLEDs composing high MW components.

  • PDF

청색 활성제의 첨가 형상 변화에 따른 백색 OLED의 발광 특성 (Effect of Doping Profile of Blue Activator on the Emission Characteristics of White Organic Light Emitting Diodes)

  • 임병관;서정현;백경갑;주성후
    • 한국전기전자재료학회논문지
    • /
    • 제24권6호
    • /
    • pp.486-490
    • /
    • 2011
  • To investigate the effect of two-emission-layer structure on the emission characteristics of the phosphorescent white organic light-emitting diodes (PHWOLEDs), the PHWOLEDs with two different emission layers, blue EML(29 nm, FIrpic-doped mCP) and red EML(1 nm, Ir(pq)$_2$acac-doped CBP)), following host-guest system were fabricated. The bi-layered blue EML was composed of mCP:FIrpic (20 nm, 7 vol.%) and mCP:FIrpic (9 nm, 7, 10, 15, 20, and 25 vol.%, respectively). When the concentration of FIrpic was increased from 7 to 15 vol.%, light emission luminance, current efficiency, and external quantum efficiency were increased. On the contrary, when the concentration of FIrpic was increased to more than 20 vol.%, light emission luminance, current efficiency, and external quantum efficiency were decreased. The PHWOLEDs with the bi-layered blue EML structure of mCP:FIrpic (20 nm, 7 vol.%) and mCP:FIrpic (9 nm, 15 vol.%) showed current efficiency of 29.7 cd/A and external quantum efficiency (EQE) of 16.6% at 1,000 $cd/cm^2$.

도판트 농도가 단일 발광층 인광 백색 OLED의 전기 및 광학적 특성에 미치는 영향 (Effects of Dopant Concentration on the Electrical and Optical Properties of Phosphorescent White Organic Light-emitting Diodes with Single Emission Layer)

  • 도재면;문대규
    • 한국전기전자재료학회논문지
    • /
    • 제27권4호
    • /
    • pp.232-237
    • /
    • 2014
  • We have fabricated white organic light-emitting diodes (OLEDs) by co-doping of red and blue phosphorescent guest emitters into the single host layer. Tris(2-phenyl-1-quinoline) iridium(III) [$Ir(phq)_3$] and iridium(III)bis[(4,6-di-fluorophenyl)-pyridinato-$N,C^{2^{\prime}}$]picolinate (FIrpic) were used as red and blue dopants, respectively. The effects of dopant concentration on the emission, carrier conduction and external quantum efficiency characteristics of the devices were investigated. The emissions on the guest emitters were attributed to the energy transfer to the guest emitters and direct excitation by trapping of the carriers on the guest molecules. The white OLED with 5% FIrpic and 2% $Ir(phq)_3$ exhibited a maximum external quantum efficiency of 19.9% and a maximum current efficiency of 45.2 cd/A.

Device Characteristics of white OLED using the fluorescent and phosphorescent materials coupled with interlayer

  • Lee, Young-Hoon;Kim, Jai-Kyeong;Yoo, Jai-Woong;Ju, Byeong-Kwon;Kwon, Jang-Hyuk;Jeon, Woo-Sik;Chin, Byung-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1437-1439
    • /
    • 2007
  • We fabricated white organic light emitting device (WOLED) with the layered fluorescent blue material and phosphorescent green/red dye-doped materials. Addition of the non-doped phosphorescent host material between the fluorescent and phosphorescent light emitting layers provided the result of broadband white spectrum, with improved balance, higher efficiency, and lower power consumption. In our devices, there was no need of exciton-blocking layer between the each emission layer for the further confinement of the diffusion of excitons.

  • PDF

Biphenyl 구조를 가진 새로운 청색 유기 발광 재료의 합성 및 EL효율과 이동도의 관계에 대한 연구 (Synthesis of New Blue OLEDs with Biphenyl Structure and Relationship between EL Efficiency and Drift Mobility)

  • 이태훈;류정이;김태훈;남장현;박성수;손세모
    • 한국인쇄학회지
    • /
    • 제22권2호
    • /
    • pp.179-198
    • /
    • 2004
  • Organic electroluminescent devices are light-emitting diodes in which the active materials consist entirely of organic materials. Recently, many fluorescent organic materials have been reported and the study on synthesis and application of new organic light-emitting materials has been demanded. This paper reports the optical and electrical characteristics of OLEDs using novel polymers containing biphenyl structure. First, Optical properties of novel light-emitting biphenyl derivatives doped with poly(9-vinyl carbazole)(PVK) and emitted blue, bluish green color, which is attributed to the overlap area between PL spectrum of host(PVK) and absorption spectra of guests(polymer). This is correspondent with F$\"{o}$rster energy transfer process in the blends. And, OLED devices were fabricated using poly (3,4-ethylenedioxy thiophene) (PEDOT) as a hole injection material and tris-(8-hydroxyquinoline) aluminum ($Alq_3$) as an electron transporting material. EL devices fabricated as ITO/PEDOT/PVK doped with biphenyl derivatives/$Alq_3$/Li:Al and I-V-L chatacteristics and emitting efficiency of EL devices were examined. Finally, the drift mobility of PVK doped with biphenyl derivatives and $Alq_3$ were measured by TOF technique varying applied electric field. EL efficiency was increased as the ratio of hole mobility of PVK doped with biphenyl derivatives and electron mobility of $Alq_3$ was close to one.

  • PDF

LED용 Ba2+ Co-Doped Sr2SiO4:Eu 황색 형광체의 발광특성 (Luminescence Characteristics of Ba2+ Co-Doped Sr2SiO4:Eu Yellow Phosphor for Light Emitting Diodes)

  • 최경재;박정규;김경남;김창해;김호건
    • 한국세라믹학회지
    • /
    • 제43권3호
    • /
    • pp.169-172
    • /
    • 2006
  • We have synthesized a $Eu^{2+}-activated\;{(Sr,Ba)}_2SiO_4$ yellow phosphor and investigated the development of blue LEDs by combining the phosphor with a InGaN blue LED chip (${\lambda}_{em}$=405 nm). The InGaN-based ${(Sr,Ba)}_2SiO_{4}:Eu$ LED lamp shows two bands at 405 nm and 550 nm. The 405 nm emission band is due to a radiative recombination from a InGaN active layer. This 405 nm emission was used as an optical transition of the ${(Sr,Ba)}_2SiO_{4}:Eu$ phosphor. The 550 nm emission band is ascribed to a radiative recombination of $Eu^{2+}$ impurity ions in the ${(Sr,Ba)}_2SiO_4$ host matrix. In the preparation of UV Yellow LED Lamp with ${(Sr,Ba)}_2SiO_{4}:Eu$ yellow phosphor, the highest luminescence efficiency was obtained at the epoxy-to-yellow phosphor ratio of 1:0.45. At this ratio, the CIE chromaticity was x=0.4097 and y=0.5488.

Luminescent Properties of LaBO3:RE3+ (RE=Tb, Ce) Phosphors for White Light Emitting Diodes

  • Cho, Shinho
    • Current Photovoltaic Research
    • /
    • 제2권2호
    • /
    • pp.53-58
    • /
    • 2014
  • $Tb^{3+}$ - or $Ce^{3+}$-doped $LaBO_3$ phosphors were synthesized by a solid-state reaction process with different concentrations of activator ions. The XRD spectra showed the monoclinic $LaBO_3$ pattern with the main peak occurring at (014) plane, irrespective of the kind of activator ions. The crystallite size was determined by using the Scherrer formula, and the maximum was obtained with an activator concentration of 0.05 mol for both phosphors. The emission spectra of $LaBO_3$ phosphors doped with $Tb^{3+}$ ions under excitation at 269 nm exhibited three major emission bands at 488, 544, and 587 nm. The strongest emission was green at 544 nm owing to the $^5D_4-^7F_5$ transition at a $Tb^{3+}$ ion concentration of 0.05 mol. For the $Ce^{3+}$-doped $LaBO_3$ phosphors, one strong blue band centered at 469 nm and weak multipeaks were observed. These results suggest that the optimum green and blue emission can be realized by controlling the concentration and type of activator ions incorporated in the host crystal.

SrAl12O19: Cex3+, Eu0.012+에서 시간분해 Photoluminescence을 이용한 청색발광에 관한 연구 (A Study on the Blue Emitting SrAl12O19: Cex3+, Eu0.012+ Using Time-resolved Photoluminescence)

  • 김광철;최진수
    • 반도체디스플레이기술학회지
    • /
    • 제15권2호
    • /
    • pp.49-54
    • /
    • 2016
  • $SrAl_{12}O_{19}:Ce_x{^{3+}}$,$Eu_{0.01}{^{2+}}$ phosphors were synthesized through a combustion process and their optical properties were investigated using time-resolved photoluminescence. A PL spectrum showed two dominant peaks which appeared at 300 and 410 nm. It is seen that, as the $Ce^{3+}$ concentration increases, the intensity of 300 nm decreases and the intensity of 410 nm increases. This behavior has been explained by two independent energy transfer mechanism. The first energy transfer occurs from $Ce^{3+}$ ion to $Eu^{3+}$ ion. The second energy transfer takes place from $Ce^{3+}$ ion to $Ce^{3+}-O_{ME}$ complex created in the magnetoplumbite structural host materials. The blue emitting 410 nm peak has been explained by both energy transfer mechanisms.