• Title/Summary/Keyword: Blue LED

Search Result 594, Processing Time 0.026 seconds

Luminescence Characteristics of Sr3MgSi2O8:Eu Blue Phosphor for Light Emitting Diodes (LED용 Sr3MgSi2O8:Eu청색 형광체의 발광특성)

  • 최경재;박정규;김경남;김창해;김호건
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.573-577
    • /
    • 2004
  • We have synthesized a Eu$^{2+}$-activated Sr$_3$MgSi$_2$ $O_{8}$ blue phosphor and investigated an attempt to develop blue LEDs by combining it with a InGaN blue LED chip (Len=405 nm). The InGaN-based Sr$_3$MgSi$_2$ $O_{8}$:Eu LED Lamp shows two bands at 405 nm and 460 nm. The 405 nm emission band is due to a radiative recombination from a InGaN active layer. This 405 nm emission was used as an optical transition of the Sr$_3$MgSi$_2$ $O_{8}$:Eu phosphor. The 460 m emission band is ascribed to a radiative recombination of Eu$^{2+}$ impurity ions in the Sr$_3$MgSi$_2$ $O_{8}$ host matrix. As a consequence of a preparation of W blue LED Lamp using the Sr$_3$MgSi$_2$ $O_{8}$:Eu blue phosphor, the highest luminescence efficiency was obtained at the ration of epoxy/blue phosphor(1/0,202). At this time, the CIE chromaticity was x=0.1417 and y=0.0683.

Fruit Qualities of De-astringent Persimmon 'Fuyu' Affected by Various Light Sources under Low and High Temperatures before Storage of Harvested Fruit

  • Kim, Tae-Choon;Kim, Chul Min;Kim, Ho Cheol
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.260-267
    • /
    • 2019
  • Harvested de-astringent persimmon 'Fuyu' were treated with various lighting sources under low (3℃) and high (22℃) temperatures. The weight loss rate of fruits was lower in those with Red LED than Fluorescence and Blue LED under both temperature conditions. Hardness and soluble solid content of fruits were higher in those with 3℃ / Blue LED or mixed LED (Blue+Red LEDs). Beta-carotene and lycopene content of fruit peel were higher in those with 3℃ than 22℃ and with Red LED or light sources with mixed red wavelength under both temperatures. When the fruits treated with light and temperature were stored for 4 days under 3℃ / dark condition, the hardness of the fruits did not significant difference among the treatments. Taken together all the results, it would be best to treat it light sources mixed red wavelength under 3℃.

Effect of Different Light Emitting Diode (LED) Lights on the Growth Characteristics and the Phytochemical Production of Strawberry Fruits during Cultivation (파장별 LED광이 딸기의 생장 특성과 생리 활성 물질 형성에 미치는 효과)

  • Choi, Hyo Gil;Kwon, Joon Kook;Moon, Byoung Yong;Kang, Nam Jun;Park, Kyoung Sub;Cho, Myeong Whan;Kim, Young Cheol
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.56-64
    • /
    • 2013
  • Recent unusual weather due to global warming causes shortage of daily sunlight and constitutes one of the primary reasons for agricultural damages. LED light sources are frequently utilized to compensate for the shortage of sunlight in greenhouse agriculture. The present study is aimed at evaluating formations of phytochemicals as well as growth characteristics of mature strawberry fruits ('Daewang' cultivar) during cultivation in a closed growth chamber equipped with artificial LED light as a sole light source. Each LED light of blue (448 nm), red (634 and 661 nm) or mixed blue plus red (blue:red = 3:7) was separately supplied and the intensity of each light was adjusted to $200{\pm}1{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at plant level with a photoperiod consisted of 16 hours light and 8 hours darkness. Strawberries grown under mixed LED light of blue and red wavelengths showed a higher production of fruits than those grown under other LED treatments. Fructose, one of the free sugars, increased in mixed LED light-grown fruits. Anthocyanin contents were elevated remarkably in the mixed LED light-grown fruits compared with those in other LED treatments. Contrastingly, contents of total phenolics and flavonoids were not of much different from one another among the fruits treated with various LED lights. On the other hand, ripening of strawberry fruits was found to be faster when grown under blue LED light compared with other LED treatments. Moreover, antioxidant activities of blue or red LED light-grown fruits, respectively, were significantly higher than those of mixed LED light-grown fruits. We suggest that when daylight is in shortage during cultivation in a greenhouse, supplementation of sunlight with LED light, which is composed of blue and red wavelengths, could be useful for the enhancement of productivity as well as of free sugar content in strawberry fruits. In addition, for the strawberry culture in the plant factory, selective adoption of LED light wavelength would be required to accomplish the purpose of controlling fruit maturation time as well as of enhancing contents of sugars and antioxidants of fruits.

Effect of LED Light Quality on Growth and Flowering of Kalanchoe (LED 광질이 칼랑코에의 생육과 개화에 미치는 영향)

  • Kim, So-Hee;Heo, You;Hwang, Ryeong-Hwan;Park, Young-Hoon;Choi, Young-Whan;Suh, Jeong-Min;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1573-1581
    • /
    • 2014
  • This study was conducted to examine the effect of LED light quality and supplemental LED light on growth and flowering for potted flowering plant of Kalanchoe. 1. Plant height of Kalanchoe was enhanced under Red, regardless of treatment time. 2. Root length and stem diameter of Kalanchoe were enhanced by Red+Blue. 3. The number of internodes was not influenced by LED light quality. Length of flower stalk of Kalanchoe increased under Red+Blue, but treatment time did not result in statistically significant differences. 4. Leaf area was not influenced by LED light quality in Kalanchoe. 5. The number of flower buds and open flowers was decreased by LED light treatment, but days to flowering was reduced by Red+Blue for 4 hr after sunset in Kalanchoe. 6. Chlorophyll and anthocyanin content was not significantly affected by LED light treatment, but anthocyanin content tended to increase by Blue 4 hr after sunset. 7. Fresh and dry weight did not increased by LED light treatment in Kalanchoe.

Effect of Light-emitting Diodes on Photosynthesis and Growth of in vitro Propagation in Tea Tree (Camellia sinensis L.) (LED 광질이 차나무 기내배양묘의 생육 및 광합성에 미치는 영향)

  • Im, Hyeon-Jeong;Na, Chae-Sun;Song, Chi-Hyeon;Won, Chang-O;Song, Ki-Seon;Hwang, Jung-Gyu;Kim, Do-Hyun;Kim, Sang-Geun;Kim, Hyun-Chul
    • Journal of agriculture & life science
    • /
    • v.53 no.6
    • /
    • pp.13-21
    • /
    • 2019
  • The influences of light generated by LEDs on shoot growth and photosynthesis of Tea plant(Camellia sinensis L.) were evaluated. The growth characteristics were investigated after 45 days of culture under four different light qualities: fluorescent lamp, red LED, blue LED, red+blue+white LED. Shoot growth was promoted by red light, especially root length and area were further promoted under the red+blue+white LED. Also, T/R ratio and Chlorophyll content were highest in red+blue+white. Fluor Cam was used to measure the fluorescence images of the plants, inhibition of photochemical efficiency(Fv/Fm) were not changed in all treatment. However, non-photochemical quenching(NPQ) were found rapidly increasing in blue LED, these results were that blue LED were inhibit photosynthetic efficiency and must be considered for efficiently in vitro cultivation of the tea plant. The above results suggest that light qualities could be an important factor to foster in vitro growth of the species. Also, In order to produce healthy plants, it is effective to using light qualities of red+blue+white LED on in vitro culture of the tea plant. These results could be used to mass propagating shoot and produce of healthy seedling.

Effect of Monochromatic Light Emitting Diode on the Growth of Four Microalgae Species (Chlorella vulgaris, Nitzschia sp., Phaeodactylum tricornutum, Skeletonema sp.) (미세조류 4종(Chlorella vulgaris, Nitzschia sp., Phaeodactylum tricornutum, Skeletonema sp.)의 성장에 미치는 발광다이오드 단일파장의 영향)

  • Oh, Seok-Jin;Kwon, Hyeong-Kyu;Jeon, Jin-Young;Yang, Han-Seob
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • We investigated the effect of monochromatic light emitting diode (LED) on the growth of diatoms Nitzschia sp., Phaeodactylum tricornutum, Skeletonema sp. and green algae Chlorella vulgaris. The four microalgae species were cultured under blue LED (450 nm), yellow LED (590 nm), red LED (650 nm) and fluorescent lamp (mixed wavelengths). The maximum growth rates and cell densities of Nitzschia sp., P. tricornutum and Skeletonema sp. were highest under blue LED, followed by fluorescent lamp, red LED and then yellow LED, however those of C. vulgaris were highest under red LED. This result indicates that blue LED is favorable for the growth of diatoms. Thus, the growth of microalgae under monochromatic light might be species-specific or taxon-specific. Also, these results could be used as an important information in future for remediation of heavy metal contamination in the sediments using LED and microalgae.

Comparative analysis on digital models obtained by white light and blue LED optical scanners (백색광과 청색 LED 방식의 광학스캐너로 채득된 디지털 모형의 비교분석)

  • Choi, Seog-Soon;Kim, Jae-Hong;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.36 no.1
    • /
    • pp.17-23
    • /
    • 2014
  • Purpose: The purpose of this study was to analyze and compare the relative accuracy of digitized stone models of lower full arch, using two different scanning system. Methods: Replica stone models(N=20) were produced from lower arch acrylic model. Twenty digital models were made with the white light and blue LED($Medit^{(R)}$, Korea) scanner. Two-dimensional distance between the landmarks were measured on the Delcam $CopyCAD^{(R)}$(Delcam plc, UK). Independent samples t-test was applied for comparison of the groups. All statistical analyses were performed using the SPSS software package(Statistical Package for Social Sciences for Windows, version 12.0). Results: The absolute disagreement between measurements made directly on the two different scanner-based dental digital models was 0.02~0.04mm, and was not statistically significant(P>0.05). Conclusion: The precision of the blue LED optical scanner was comparable with the digitization device, and relative accuracy was similar. However, there still is room for improvement and further standardization of dental CAD technologies.

Spectral Irradiance and Underwater Transmission Characteristics of a Combined High-Luminance Light-Emitting Diodes as the Light Source for Fishing Lamps (복수 조합에 의한 고휘도 발광 다이오드의 분광분포와 수중투과특성)

  • Choi, Sok-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.6
    • /
    • pp.703-710
    • /
    • 2009
  • The spectral irradiance and underwater transmission characteristics of a combined high-luminance light-emitting diode (LED) lights have been studied to evaluate suitable light sources for fishing lamps of the next generation. The wavelengths at which the irradiance was maximum were changed from 473, 501, 525, and 465 nm for blue, peacock blue, green, and white LED light to 475, 504 and 528 nm for [$F_{WB}$], [$F_{PB}$] and [$F_{GB}$] combined LED lights, respectively. If the irradiance characteristics at 400-700 nm wavelengths are set as 100%, the irradiance rates at 450-499 nm and 500-549 nm were decreased from 82.4% and 56% for blue, peacock blue LED light to 60.0%, 38.5% for [$F_{WB}$], [$F_{WP}$] combined LED lights. The underwater transmission characteristics of the combined LED lights were superior in the order [$F_{WB}$], [$F_{BP}$], [$F_{GB}$] in optical water type I; [$F_{WB}$], [$F_{PB}$], [$F_{GP}$] in optical water type II-III; and [$F_{GP}$], [$F_{WP}$], [$F_{PB}$] in optical water type 1. Setting the 10m depth underwater transmission characteristics of the combined LED lights in optical water type I at 100%, the transmission of water types II, III and 1 drops to 29.5%, 8.0% and 2.2%. Based on the distribution of spectral irradiance and underwater transmission characteristics calculated in optical water types II-III, where was the jigging ground for fishing lamps, the [$F_{WB}]$ and [$F_{GP}$] combined LED lights can be used as a suitable light sources for fishing lamps of the next generation.

Effects of Fluorescent Light and Light-Emitting Diodes on Leaf Morphology, Growth and Antioxidant Capacity of Salvia plebeia (형광등과 발광다이오드 광원이 '곰보배추'의 생육, 엽형 및 항산화능에 미치는 영향)

  • Park, Heon;Yu, Yeon Jung;Choi, Eun Young
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.208-214
    • /
    • 2017
  • This study aimed to determinate the effect of fluorescent light and light-emitting diodes on the leaf morphology, growth and antioxidant capacity of Salvia plebeia. The plants were grown for 56 days after transplanting (DAT) under the fluorescent light (FL) and LEDs (White, Red and Blue (R+B, ratio 2:1), Blue, Red LED) under the same light intensity and photoperiod ($130{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 12 hours). Leaf length, width and number of Salvia plebeia at the 56 DAT were significantly higher under the FL and red LED, and lower in the RB LED and white LED. The highest fresh and dry weights of shoot and leaf area were observed in the red LED, followed by the FL and blue LED, and the lowest in the RB LED and white LED. After 21 DAT, leaf apinasty symptom was appeared in plants grown under red LED and RB LED. The chlorophyll content was lower in the red LED. The specific leaf weight, the ratio of leaf dry weight to area, was higher in the blue LED, and lowest in the FL. No significant difference in DPPH radical scavenging activity of Salvia plebeia under the different light sources. All the integrated results suggest that the FL light is a proper light conditions for a closed cultivation of Salvia plebeia.

A study of violet LED chips and white LED lamps (자색 LED 칩 및 백색 LED 램프에 대한 연구)

  • 서종욱;김창연;김희수;노승정
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.235-238
    • /
    • 2003
  • Conventional LED displays use pixels which consist of red, green and blue LEDs of different operation voltages and degradation characteristics. Thus, the circuits are complicated and the display of each color changes independently with the operated time. In order to solve these drawbacks, an LED chip of a short wavelength and an LED lamp with the mixture of red, green, blue fluorescencers and epoxy on the LED chip were studied. The fluorescencers are excited by the light of the LED chip. The LED chip has an active layer of InGaN, a peak wavelength of 408 nm, a FWHM of 13 nm and the CIE index of (0.198, 0.087). White LED lamps were obtained and the CIE index change was observed with the change of the epoxy amount added to the fluorescencers.