Browse > Article
http://dx.doi.org/10.7837/kosomes.2015.21.1.001

Effect of Monochromatic Light Emitting Diode on the Growth of Four Microalgae Species (Chlorella vulgaris, Nitzschia sp., Phaeodactylum tricornutum, Skeletonema sp.)  

Oh, Seok-Jin (Department of Oceanography, Pukyong National University)
Kwon, Hyeong-Kyu (Korea Inter-University Institute of Ocean Science, Pukyong National University)
Jeon, Jin-Young (Department of Oceanography, Pukyong National University)
Yang, Han-Seob (Department of Oceanography, Pukyong National University)
Publication Information
Journal of the Korean Society of Marine Environment & Safety / v.21, no.1, 2015 , pp. 1-8 More about this Journal
Abstract
We investigated the effect of monochromatic light emitting diode (LED) on the growth of diatoms Nitzschia sp., Phaeodactylum tricornutum, Skeletonema sp. and green algae Chlorella vulgaris. The four microalgae species were cultured under blue LED (450 nm), yellow LED (590 nm), red LED (650 nm) and fluorescent lamp (mixed wavelengths). The maximum growth rates and cell densities of Nitzschia sp., P. tricornutum and Skeletonema sp. were highest under blue LED, followed by fluorescent lamp, red LED and then yellow LED, however those of C. vulgaris were highest under red LED. This result indicates that blue LED is favorable for the growth of diatoms. Thus, the growth of microalgae under monochromatic light might be species-specific or taxon-specific. Also, these results could be used as an important information in future for remediation of heavy metal contamination in the sediments using LED and microalgae.
Keywords
Light emitting diode; Growth; Nitzschia sp.; Phaeodactylum tricornutum; Skeletonema sp.; Chlorella vulgaris;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Arkipo G. E., M. E. Kja and L. O. Ogbonnaya(2004), Cd uptake by the green alga Chlorella emersonii, Global J. Pure Appl. Sci., Vol. 10, pp. 257-262.
2 Baba, M., F. Kikuta, I. Suzuki, M. M. Watanabe and Y. Shiraiwa(2012), Wavelength specificity of growth, photosynthesis, and hydrocarbon production in the oil-producing green alga Botryococcus braunii, Biores. Technol., Vol. 109, pp. 266-270.   DOI
3 Brand, L. E., R. R. L. Guillard and L. S. Murphy(1981), A method for the rapid and precise determination of acclimated phytoplankton reproduction rates, J. Plankton Res., Vol. 3, pp. 193-201.   DOI
4 Butler, A.(1998), Acquisition and utilization of transition metal ions by marine organisms, Science, Vol. 281, No. 5374, pp. 207-209.   DOI
5 Carvalho, A. P., S. O. Silva and J. M. Baptista(2011), Light requirements in microalgal photobioreactors; an overview of biophotonic aspects, Appl. Microbiol. Biotechnol., Vol. 89, pp. 1275-1288.   DOI
6 Fraile, A., S. Penche, F. Gonzalez, M. L. Blazquez, J. A. Munoz and A. Ballester(2005). Biosorption of copper, zinc, cadmium and nickel by Chlorella vulgaris. Chem. Ecol., Vol. 21, pp. 61-75.   DOI
7 Fu, W., O. Guomundsson, G. Paglia, G. Herjolfsson, O. S. Andresson, B. O. Palsson and S. Brynjolfsson(2013), Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution, Applied microbiology and biotechnology, Vol. 97, No. 6, pp. 2395-2403.   DOI
8 Gostan, J., C. Lechuga-Deveze and L. Lazzara(1986), Does blue light affect the growth of Chaetoceros protuberans (Bacillariophyceae), J. Phycol., Vol. 22, pp. 63-71.   DOI
9 Grotjohann, R., M. Rho and W. Kowallik(1991), Influences of blue and red light on the photosynthetic apparatus of Chlorella kesslery, Bot. Acta, Vol. 108, pp. 168-173.
10 Guillard, R. R. L. and J. H. Ryther(1962), Studies of marine planktonic diatoms Cyclotella nana Hustedt and Detonula conjervaces (Cleve) Gran, Can. J. Microbiol., Vol. 8, pp. 223-239.
11 Gupta, V. K. and A. Rastogi(2008), Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies, J. Hazard Mater., Vol. 152, pp. 407-414.   DOI
12 Jeffrey, S. W. and M. Vesk(1977), Effects of blue-green light on photosynthetic pigments and chloroplasts structure in the marine diatom Stephanopyxis turris, J. Phycol., Vol. 13, pp. 271-279.
13 Jeon, Y. C., C. W. Cho and Y. S. Yun(2005), Measurement of microalgal photosynthetic activity depending on light intensity and quality, Biochemical Engineering Journal, Vol. 27, No. 2, pp. 127-131.   DOI
14 Katsuda, T., A. Lababpour, K. Shimahara and S. Katoh(2004), Astaxanthin production by Haematococcus pluvialis under illumination with LEDs, Enzyme and microbial technology, Vol. 35, No. 1, pp. 81-86.   DOI
15 Kianianmomeni, A. and A. Hallmann(2014). Algal photoreceptors: in vivo functions and potential applications, Planta, Vol. 239, pp. 1-46.   DOI
16 Kim, T. H., Y. H. Lee, S. H. Han and S. J. Hwang(2013), The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Biores. Tech., Vol. 130, pp. 75-80.   DOI
17 Kwon, H. K.(2013), A study on phytoremediation of eutrphic coastal sediments using benthic microalgae and light emitting diode. Ph. D. Thesis, Pukyung National University, Busan, p. 255.
18 Matthijs, H. C., H. Balke, U. M. Van Hes, B. Kroon, L. R. Mur and R. A. Binot(1996), Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa), Biotechnol Bioeng., Vol. 50, pp. 98-107.   DOI
19 Kwon, H. K., S. J. Oh and H. S. Yang(2013), Growth and uptake kinetics of nitrate and phosphate by benthic microalgae for phytoremediation of eutrophic coastal sediments, Bioresource technology, Vol. 129, pp. 387-395.   DOI
20 Lederman T. C. and P. Tett(1981), Problems in modeling the photosynthesis-light relationship for phytoplankton, Bot. Mar., Vol. 24, pp. 125-134.
21 Menon, K. R., R. Balan and G. Suraishkumar(2013). Stress induced lipid production in Chlorella vulgaris: Relationship with specific intracellular reactive species levels. Biotechnol. Bioeng., Vol. 110, pp. 1627-1639.   DOI
22 Metaxas, A. and A. G. Lewis(1991). Copper tolerance of Skeletonema costatum and Nitzschia thermalis. Aqua. toxic., Vol. 19, pp. 265-280.   DOI
23 Monteiro, C. M., P. M. L. Castro and F. X. Malcata(2011), Biosorption of zinc ions from aqueous solution by the microalgae Scenedesmus obliquus, Environ. Chem. Lett., Vol. 9, pp. 169-176.   DOI
24 Oh, S. J., I. S. Kang, Y. H. Yoon and H. S. Yang(2008), Optical Characteristic on the Growth of Centric Diatom, Skeletonema costatum(Grev.) Cleve Isolated from Jinhae Bay in Korea, Korean J. Environ. Biol., Vol. 26, No. 2, pp. 57-65.
25 Oh, S. J., Y. H. Yoon, D. I. Kim, Y. Shimasaki, Y. Oshima and T. Honjo(2006), Effects of Light Quantity and Quality on the Growth of the Harmful Dinoflagellate, Cochlodinium polykrikoides Margalef (Dinophyceae), Algae, Vol. 21, No. 3, pp. 311-316.   DOI
26 Shikata, T., A. Nukata, S. Yoshikawa. T. Matsubara, Y. Yamasaki, Y. Shimasaki, Y. Oshima and T. Honjo(2009), Effects of light quality on initiation and development of meroplanktonic diatom blooms in a eutrophic shallow sea. Mar. Biol., Vol. 156, pp. 875-889.   DOI
27 Sanchez-Saavedra, M. P. and D. Voltolina(1996), Effect of blue-green light on growth rate and chemical composition of three diatoms, Journal of applied phycology, Vol. 8, No. 2, pp. 131-137.   DOI
28 Schimid, R. and M. J. Dring(1996), Blue light and carbon acquisition in brown algae: an overview and recent developments, Sci. Mar., Vol. 60, pp. 115-124.
29 Shih, S. C. C, N. S. Mufti, M. D. Chamberlain, J. Kim and A. R. Wheeler(2014), A droplet-based screen for wavelength -dependent lipid production in algae, Energy Environ. Sci., Vol. 7, pp. 2366-2375.   DOI
30 Takano, H., T. Arai, M. Hirano and T. Matsunaga(1995), Effects of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp. NKBG 042902. Appl. Microb. Biotech., Vol. 43, pp. 1014-1018.   DOI
31 Torres, E., A. Cid, C. Herrero and J. Abalde(1998), Removal of cadmium ions by the marine diatom Phaeodactylum tricornutum Bohlin accumulation and long-term kinetics of uptake. Biores. Technol., Vol. 63, pp. 213-220.   DOI
32 Vesk, M. and S. W. Jeffrey(1977), Effect of blue-green light on photosynthetic pigments and chloroplast structure in unicellular marine algae from six classes, J. Phycol., Vol. 13, pp. 280-288.
33 Wallen, D. G. and G. H. Geen(1971), Light quality in relation to growth, photosynthetic rates and carbon metabolism in two species of marine plankton algae, Mar. Biol., Vol. 10, pp. 34-43.   DOI
34 Yan, C., X. Luo and Z. Zheng(2013), Effects of various LED light qualities and light intensity supply strategies on purification of slurry from anaerobic digestion process by Chlorella vulgaris, Inter. Biodeter. Biodegra., Vol. 79, pp. 81-87.   DOI
35 Wang, C. Y., C. C. Fu and Y. C. Liu(2007), Effects of using light-emitting diodes on the cultivation of Spirulina platenesis, Biochem. Eng. J., Vol. 37, pp. 21-25.   DOI
36 Xu, B., P. Cheng, C. Yan, H. Pei and W. Hu(2013), The effect of varying LED light sources and influent carbon/nitrogen ratios on treatment of synthetic sanitary sewage using Chlorella vulgaris, World Journal of Microbiology and Biotechnology, Vol. 29, No. 7, pp. 1289-1300.   DOI
37 Xue, S., Z. Su. and W. Cong(2011). Growth of Spirulina platensis enhanced under intermittent illumination. J. Biotech., Vol. 151, pp. 271-277.   DOI