• Title/Summary/Keyword: Blue LED

Search Result 594, Processing Time 0.028 seconds

Analysis of the Temperature Dependence of Phosphor Conversion Efficiency in White Light-Emitting Diodes

  • Ryu, Guen-Hwan;Ryu, Han-Youl
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.311-316
    • /
    • 2015
  • We investigate the temperature dependence of the phosphor conversion efficiency (PCE) of the phosphor material used in a white light-emitting diode (LED) consisting of a blue LED chip and yellow phosphor. The temperature dependence of the wall-plug efficiency (WPE) of the blue LED chip and the PCE of phosphor are separately determined by analyzing the measured spectrum of the white LED sample. As the ambient temperature increases from 20 to $80^{\circ}C$, WPE and PCE decrease by about 4.5% and 6%, respectively, which means that the contribution of the phosphor to the thermal characteristics of white LEDs can be more important than that of the blue LED chip. When PCE is decomposed into the Stokes-shift efficiency and the phosphor quantum efficiency (QE), it is found that the Stokes-shift efficiency is only weakly dependent on temperature, while the QE decreases rapidly with temperature. From 20 to $80^{\circ}C$ the phosphor QE decreases by about 7% while the Stokes-shift efficiency changes by less than 1%.

The effect of RGB LED lights on oyster mushroom (Pleurotus spp.) fruit-body characteristics (RGB LED 광원이 느타리류의 자실체 특성에 미치는 효과)

  • Jae-San Ryu;KyeongSook Na;Jeong-Han Kim;Jeong Woo Lee;Hee-Min Gwon
    • Journal of Mushroom
    • /
    • v.21 no.3
    • /
    • pp.132-139
    • /
    • 2023
  • Light plays an important role in fruit-body development and morphology during Pleurotus spp. cultivation. To understand the effects of light color on fruit-body properties, we evaluated the fruit-body characteristics of Pleurotus spp. Varieties cultivated under blue, red, and purple LED light sources. The main results are as follows: The overall fruit-body shape showed differences depending on the color of the LED light. The fruit-bodies of mushroom cultivated under blue and purple light were generally similar to the mushroom shapes typically produced, while those of mushroom cultivated under green light were abnormally shaped, probably due to the absence of effective light source. The average cap lightness of mushrooms cultivated under blue, green, and purple LED lights was 57.0, 57.4, and 59.4, respectively. The average cap lightness of all varieties except Wonhyeong1ho and Hwang-geumsantari cultivated under the three LED light sources were statistically significantly different (P<0.05). The cap redness varied significantly depending on the LED lighting and variety. Only Gonji7hoM, the cap color mutant of Gonji7ho, showed negative cap redness values under all three LED light sources. Among the eight varieties excluding Gonji7ho, the highest cap redness was observed when cultivated under the blue LED. The average harvest weight of the varieties cultivated under purple, blue, and green LED light were 68.0, 58.3, and 50.1 g, respectively. The yield of Gonji7ho, the mushroom variety with the highest yield, cultivated under blue, green, and purple LED light were 92.8, 77.1, and 98.6 g, respectively. The earliness when grown under the purple, blue, and green LED lights were 5.3, 5.8, and 5.8 days, respectively. Among the varieties, six, three, and two cultivars showed the shortest earliness under the purple, green, and blue LED, respectively. The fruit-body lengths were 66.4, 51.8, and 46.8 mm when cultivated under green, purple, and blue lights, respectively. These results are expected to serve as a foundation for producing mushrooms with traits demanded in the market.

Effects of Light Emitting Diodes on Growth and Morphogenesis of in vitro Seedlings in Platycodon grandiflorum (도라지 배양묘의 생장 및 형태형성에 미치는 발광다이오우드의 효과)

  • 은종선;김영선;김용현
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.1
    • /
    • pp.71-75
    • /
    • 2000
  • To clarify the possibility of plant production under red, green. blue, and red+blue using light emitting diodes (LEDs) and fluorescent lamps (control), the effects of light quality on the growth and morphogenesis of in vitro seedlings in Piatycodon grandiflorum were examined. The plantlets grown under the LEDs resulted in taller plants with greater stem than fluorescent lamps. The shortest shoot length, 3.8 cm, was observed in the control and the longest one, 13.4 cm, in the red light. But the shoot length was 5.6 cm under red LED with supplemental blue(red+blue light). This results indicate that red LED may be suitable, in proper combination with other wavelengths of light. The root length under red light was significantly smaller among the treatments. The plantlets grown under red+blue light had lower shoot dry weight, higher dry matter than other lights-grown plantlets. Among the various growth parameters measered, there was an indication that leaf area was controlled by the LEDs. Leaf area of a plantlets developing under green light was about 2.4 times wider than that of plantlets grown under red LED (10.1 $\textrm{cm}^2$ in area). The dry matter rate per plantlet among the treatments was greater in plantlets grown under the red/blue LEDs in comparison with that grown under other LEDs. Chlorophyll contents in plantlets grown under the red, green, blue and red/blue LEDs were 2%, 7% 20% and 10% lower, respectively, than those in plant grown under fluorescent lamps.

  • PDF

Effect of LED light on the inactivation of Bacillus cereus for extending shelf-life of extruded rice cake and simulation of the patterns of LED irradiation by various arrays of LEDs (압출떡의 유통기한 연장을 위한 LED 조사의 Bacillus cereus 억제 효과 및 LED의 배열에 따른 빛의 조사 패턴 시뮬레이션)

  • Jung, Hwabin;Yuk, Hyun-Gyun;Yoon, Won Byong
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.2
    • /
    • pp.181-186
    • /
    • 2019
  • The optimum design of LED device for irradiation of 460 nm blue light on extruded rice cake using simulation and the effect of the blue light on the inactivation of Bacillus cereus (B. cereus) group on the rice cake were investigated. The irradiated light intensity patterns on the surface area of the sample were simulated with three different LED arrays (centered, cross, and evenly spaced) and at various distances (22, 32, 42 mm) between the LED modules and the sample. In addition, the uniformity was calculated as Petri factor. The evenly spaced array resulted the most uniform light intensity pattern in the simulation, and the Petri factor of 32 and 42 mm of the distances showed higher than 0.9, which represents the ideal uniformity of LED device. The bacterial population of the rice cake decreased to less than the initial bacterial population during exposure to LED blue light, whereas the bacterial population of the control sample increased. The bacterial count of the rice cake after blue light irradiation for 24 h was 1.21 log CFU/g lower than the control sample. Petri factor increased with increase of the distance between the light source and sample, however, the reduction rate of B. cereus group decreased. Therefore, the design of LED device, that represented the Petri factor higher than 0.9 and inactivated the population of B. cereus group, with evenly spaced and 32 mm of distance between the light source and sample was suitable for extending shelf-life of rice cake.

Effect of LED Light Quality and Supplemental Time on the Growth and Flowering of Impatiens (LED 광질과 보광시간이 임파첸스의 생육과 개화에 미치는 영향)

  • Kim, So Hee;Heo, You;Rhee, Han Cheol;Kang, Jum Soon
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.214-219
    • /
    • 2013
  • This study was conducted to examine the effect of LED light quality and treatment time on the growth and flowering in potted plants of Impatiens (Impatiens hawkerihybrid). Plant height of Impatiens was enhanced under Blue light, regardless of treatment time. Root length and stem diameter of Impatiens were enhanced by Red light or Blue light. The number of internodes was not influenced by LED light quality. The number of branches of Impatiens was increased under Blue light, but treatment time did not result in statistically significant differences. Leaf area was increased by all LED lights in Impatiens. The number of flower buds and open flowers was decreased by LED light, but days to flowering were reduced by Red light in Impatiens. Chlorophyll and anthocyanin content were not significantly affected by LED light, but anthocyanin content tended to increase by Blue light for 4 h after sunset. Fresh and dry weights were enhanced by Blue light in Impatiens.

Effect of LED Light on Primordium Formation, Morphological Properties, Ergosterol Content and Antioxidant Activity of Fruit Body in Pleurotus eryngii (LED광원이 큰느타리버섯 자실체의 발생, 생육, 에르고스테롤 함량 및 항산화활성에 미치는 영향)

  • Jang, Myoung-Jun;Lee, Yun-Hae;Kim, Jeong-Han;Ju, Young-Cheol
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.175-179
    • /
    • 2011
  • Light wavelength is the major factor of fruit body development associated with mushroom cultivation, but its wavelength range in Pleurotus eryngii is poorly understood. Using four kinds of light emitting diode (LED) including blue (475 nm), green (525 nm), yellowed (590 nm) and red (660 nm), we investigated to elucidate suitable light wavelength during primordium formation and fruit body development of P. eryngii on bottle cultivation. Primordia formation did not occur in blue light and red light. The morphological properties of fruit body in fluorescent lamp and blue light irradiation were showed thicker and larger pileus than those in other LEDs. However, length of stipe in fluorescent lamp and blue light was shorter than that of other LEDs. The DPPH radical was high in blue light, green light, and yellow light except for red light, and the polyphenol was high in four kinds of LED sources. And ergosterol was the highest in the green light. Thus, the high-quality mushroom production of P. eryngii is possible to green light condition considering productivity and functional materials.

Preparation, Characterization and Photoluminescence Properties of Ca1-xSrxS:Eu Red-emitting Phosphors for a White LED

  • Sung, Hye-Jin;Cho, Young-Sik;Huh, Young-Duk;Do, Young-Rag
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1280-1284
    • /
    • 2007
  • A series of Ca1-xSrxS:Eu (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) phosphors were synthesized by solid-state reactions. The Ca1-xSrxS:Eu phosphors have a strong absorption at 455 nm, which corresponds to the emission wavelength of a blue LED. The emission peak of Ca1-xSrxS:Eu is blue shifted from 655 to 618 nm with increasing Sr content. The characteristics of Ca1-xSrxS:Eu phosphors make them suitable for use as wavelengthtunable red-emitting phosphors for three-band white LEDs pumped by a blue LED. In support of this, we fabricated a three-band white LED by coating SrGa2S4:Eu and Ca0.6Sr0.4S:Eu phosphors onto a blue LED chip, and characterized its optical properties.

Effects of Pre Harvest Light Treatments (LEDs, Fluorescent Lamp, UV-C) on Glucosinolate Contents in Rocket Salad (Eruca sativa) (수확 전 LED, 형광등, UV-C 조사가 로켓 샐러드 내 글루코시놀레이트 함량에 미치는 영향)

  • Lee, Hye-Jin;Chun, Jin-Hyuk;Kim, Sun-Ju
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.178-187
    • /
    • 2017
  • The aim of this study was to investigate the effect of different light sources on the levels of glucosinolates (GSLs) in rocket salad (Eruca sativa L.). The light sources used in the study were: natural light (Control-1 or 2), red light-emitting diodes(LEDs), blue LEDs, mixed red and blue LEDs (R+B LEDs), white LEDs, fluorescent lamps (FL), and fluorescent lamps plus UV-C (FL+UV-C). Two separate experiments were conducted [Experiment I: Control-1, Red LED, Blue LED, Mix (R+B) LED and Experiment II: Control-2, White LED, FL, FL+UV-C] because of the limited number of growth chambers in our laboratory. The rate of increase in the length of rocket salad leaves was the highest under red LEDs and, FL confirming that red LED and, FL affect the growth of rocket salad. We separated and identified seven types of GSLs from the rocket salad:glucoraphanin, diglucothiobeinin, glucoerucin, glucobrassicin, dimeric 4-mercaptobutyl GSL, 4-methoxyglucobrassicin, and gluconasturtiin. The highest total GSL contents in Eexperiment I was found in plants grown under in red LEDs ($4.30{\mu}mol{\cdot}g^{-1}\;dry$ weight, DW), and the lowest under blue LEDs ($0.17{\mu}mol{\cdot}g^{-1}\;DW$). The highest total GSL contents in Experiment II was found in plants grown under FL ($13.45{\mu}mol{\cdot}g^{-1}\;DW$), and the lowest in FL+UV-C ($0.39{\mu}mol{\cdot}g^{-1}\;DW$). Especially in Experiment II, the content of dimeric 4-mercaptobutyl, which has a strong aroma and spicy flavor in rocket salad, was higher under FL and white LEDs than in Control-2, increasing by approximately 14.9 and 3.2-fold respectively. Therefore, light sources such as red LEDs, white LEDs and FL affected the accumulation of GSLs in rocket salad.

The effects of light colour on female rabbit reproductive performance and the expression of key genes in follicular development

  • Xiaoqing, Pan;Xinglong, Wang;Le, Shao;Jie, Yang;Feng, Qin;Jian, Li;Xia, Zhang;Pin, Zhai
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.432-442
    • /
    • 2022
  • The purpose of this study was to analyse the effects of light colour on rabbit reproductive performance and the expression of key follicular development genes. Rabbits (n = 1,068, 5 months old, 3.6-4.4 kg live body weight) were divided randomly into four groups, housed individually in wire mesh cages and exposed to red, green, blue, and white light-emitting diode (LED) light (control). The lighting schedule was 16 L : 8 D-15 d / 150 lx / 6:00 am-22:00 pm (3 d preartificial insemination to 12 d postartificial insemination). Red light and white light affected the conception rate and kindling rate and increased the total litter size at birth (p < 0.05). The effects of red light on litter size at weaning, litter weight at weaning, and individual weight at weaning increased compared with the green and blue groups. The effects of red light on live litter size at birth were increased compared with those in the blue group (p < 0.05). Compared to white light, green and blue light reduced the number of secondary follicles (p < 0.05). Compared to red light, green and blue light reduced the number of tertiary follicles (p < 0.05). Compared with white light, red LED light resulted in greater ovarian follicle stimulating hormone receptor and luteinizing hormone receptor mRNA expression (p < 0.05). Compared with green and blue LED light, red LED light resulted in greater B-cell lymphom-2 mRNA expression (p < 0.05). Compared with green LED light, red LED light inhibited FOXO1 mRNA expression in rabbit ovaries (p < 0.05). Red light can affect the reproductive performance of female rabbits and the expression of key genes for follicular development.

A Study of the Growth Characteristics of Starry Flounder Platichthys Stellatus in Accordance with the LED Wavelength (LED 파장에 따른 강도다리 Platichthys Stellatus 성장특성)

  • Jang, Jun-Chul;Her, In-Sung;Lee, Se-Il;Yu, Young-Moon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.495-500
    • /
    • 2015
  • Currently the fish aquaculture industry of Korea is focused on the mass culture of flatfish (Paralichthys olivaceus) and and rockfish (Sebastes schlegeli) with completely controlled culture techniques. Recently, there has been considerable interest in new species development, such as the starry flounder (Platichthys stellatus). The value of starry flounder (Platichthys stellatus) as a raw fish increases with time because it is tasty, light, and bouncy. In this paper, the growth characteristics dependent on the LED wavelengths and the optimal growth conditions of the starry flounder were studied. In these experiments 4 different kinds of LED lighting, configurations were designed and prepared using red, green, blue and white, respectively. The fish aquaculture experiments were conducted over 10 weeks in four fish tanks, each installed with a different color of LED lighting. 10 starry flounders of 13 ~ 17g were placed into each tank. The effects of each color of light on the growth rate of the starry flounders were then examined. As a result, the starry flounders under the green LED lighting showed the highest growth rate, followed by the white, red, and blue LED lighting. Based on these results, a green light provides a suitable breeding environment for the starry flounder.