• Title/Summary/Keyword: Blue LED

Search Result 594, Processing Time 0.024 seconds

Spore Germination and Prothallium Development Conditions of Lygodium japonicum (Thunb.) Sw. (실고사리(Lygodium japonicum (Thunb.) Sw.) 포자발아와 전엽체 발달조건)

  • Kwon, Hyuk Joon;Shin, So Lim;Lim, Yun Kyung;Kim, Soo-Young
    • Korean Journal of Plant Resources
    • /
    • v.29 no.4
    • /
    • pp.400-406
    • /
    • 2016
  • This study was conducted to determine the optimal conditions of growth medium, temperature, and light quality for efficient propagation of Lygodium japonicum spores. The rate of spore germination and prothalium development was high in Knop and 1/8MS and 1/4MS media, which had low mineral content; in particular, the germination rate exceeded 74%, and the germinated spores developed into heart-shaped prothallia. However, in Knop‘s medium with the lowest mineral content, a rapid prothallium senescence was observed; in 1/4MS medium, prothallium development was delayed. Germination rate increased with the increase in temperature and reached its maximum, 86.7%, at 30℃; however, at this temperature, the prothallia were thinner and abnormal development of rhizoids was observed compared to normally developed prothallia and rhizoids at 25℃. Therefore, the results suggested that the optimal temperature for L. japonicum spore germination was 25℃. The rate of germination was also measured under different light conditions, and the highest rate of 90.6% was observed under LED red light compared to fluorescent (77.2%) or LED blue (5.4%) lights. The germinated spores developed into heart-shaped prothallia under LED red light; however, 15 days after seeding, prothallium development decreased and the became elongated. In contrast, a normal and continuous development of heart-shaped prothallia was observed under fluorescent light.

Synthesis and Application of Bluish-Green BaSi2O2N2:Eu2+ Phosphor for White LEDs (백색 LED용 청록색 BaSi2O2N2:Eu2+ 형광체의 합성 및 응용)

  • Jee, Soon-Duk;Choi, Kang-Sik;Choi, Kyoung-Jae;Kim, Chang-Hae
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.250-254
    • /
    • 2011
  • We have synthesized bluish-green, highly-efficient $BaSi_2O_2N_2:Eu^{2+}$ and $(Ba,Sr)Si_2O_2N_2:Eu^{2+}$ phosphors through a conventional solid state reaction method using metal carbonate, $Si_3N_4$, and $Eu_2O_3$ as raw materials. The X-ray diffraction (XRD) pattern of these phosphors revealed that a $BaSi_2O_2N_2$ single phase was obtained. The excitation and emission spectra showed typical broadband excitation and emission resulting from the 5d to 4f transition of $Eu^{2+}$. These phosphors absorb blue light at around 450 nm and emit bluish-green luminescence, with a peak wavelength at around 495 nm. From the results of an experiment involving Eu concentration quenching, the relative PL intensity was reduced dramatically for Eu = 0.033. A small substitution of Sr in place of Ba increased the relative emission intensity of the phosphor. We prepared several white LEDs through a combination of $BaSi_2O_2N_2:Eu^{2+}$, YAG:$Ce^{3+}$, and silicone resin with a blue InGaN-based LED. In the case of only the YAG:$Ce^{3+}$-converted LED, the color rendering index was 73.4 and the efficiency was 127 lm/W. In contrast, in the YAG:$Ce^{3+}$ and $BaSi_2O_2N_2:Eu^{2+}$-converted LED, two distinct emission bands from InGaN (450 nm) and the two phosphors (475-750 nm) are observed, and combine to give a spectrum that appears white to the naked eye. The range of the color rendering index and the efficiency were 79.7-81.2 and 117-128 lm/W, respectively. The increased values of the color rendering index indicate that the two phosphor-converted LEDs have improved bluish-green emission compared to the YAG:Ce-converted LED. As such, the $BaSi_2O_2N_2:Eu^{2+}$ phosphor is applicable to white high-rendered LEDs for solid state lighting.

Effects of Light Quality and Lighting Type Using an LED Chamber System on Chrysanthemum Growth and Development Cultured In Vitro (LED Chamber System을 이용한 광질 및 광조사 방법 제어가 국화 배양소식물체의 생장에 미치는 영향)

  • Heo, Jeong-Wook;Lee, Yong-Beom;Chang, Yu-Seob;Lee, Jeong-Taek;Lee, Deog-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.374-380
    • /
    • 2010
  • This experiment was carried out to investigate the effect of light qualities and lighting types provided by LED Chamber System which designed by Rural Development Administration on growth and development of Chrysanthemum (Dendranthema grandiflorum L., cv. 'Cheonsu') plantlet cultured in vitro. The explants of single-node cuttings were exposed to monochromic or mixture radiation of blue, red, or green under continuous and intermittent lighting for 42 days. The intermittent lighting of 20 sec. on and off per minute significantly stimulated shoot elongation with lower number of internodes compared with continuous lighting treatments. However, continuous blue, red, or green light gave greater dry weight comparing the intermittent lighting, and the lowest weight was recorded at the continuous fluorescent lamp. Otherwise, the plantlet growth in dry weight or leaf area was inhibited by the green light controlled at 50 times intermittence but internode elongation was significantly increased. These results showed that the plantlets were successfully grown under the LED Chamber System controlled with different light qualities and lighting types. Quantitative growth of the plantlets was improved under the shorter photoperiod with a intermittent lighting cycle compared with continuous lighting using fluorescent lamps. It is concluded that the growth and development of in vitro plantlets such as single-node cuttings can be achieved by the controlling of light quality or lighting type during the photoperiod per day with a lower electric cost compared with conventional continuous lighting system.

Design and performance estimation of fish-luring system using the water cooling typed LED lamp (채낚기 어선용 수랭식 LED 집어시스템의 설계 및 성능평가)

  • Bae, Bong-Seong;An, Heui-Chun;Kwon, Ki-Jin;Park, Seong-Wook;Park, Chang-Doo;Lee, Kyoung-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.2
    • /
    • pp.79-87
    • /
    • 2011
  • A fishing lamp is fishing gear to gather fish in the night. But the cost of oil which is used to a light fishing lamp, goes significantly up to almost one hundred million won for 50 tonnage vessels and forty million won in case of vessels less than 10 tonnages. This cost has almost taken 30.40% of total fishing costs. As oil price increases, the business condition of the fishery gets worse and worse. Therefore, it is very urgent to develop an economical fishing lamp, to solve the problem of fishery's business difficulty. This research aims at developing a fishing lamp for squid jigging fishery and hairtail angling fishery using the LED, which has excellent efficiency and durability. One fishing lamp has about 160Watt capacity and five fishing lamps are installed one aluminium panel in which sea water flows to emit generated heat from LED to outside. Developed fishing lamp lights to an effective direction of jigging and angling operation. This fishing lamp can be controlled to light the direction of fish shoal because the aluminium panel can be controlled to up and down direction. The wave length of fishing lamp has white and blue color. White color light is to gather fish shoal of horizontal direction and blue color light is to gather fish shoal of vertical direction. After development of this fishing lamp, 60.110 units are established on the boat, and operated fishing. Consequently, in the case of squid jigging, spent energy was reduced to 39%, in the case of hairtail angling, 68% of spent energy was reduced. And the catch was more than another boat.

Enhanced biosynthesis of artemisinin by environmental stresses in Artemisia annua (환경스트레스 처리에 의한 개똥쑥 artemisinin 생합성 증진)

  • Kyung Woon Kim;Cheol Ho Hwang
    • Journal of Plant Biotechnology
    • /
    • v.49 no.4
    • /
    • pp.307-315
    • /
    • 2022
  • Artemisinin is a secondary metabolite of Artemisia annua that shows potent anti-malarial, anti-bacterial, antiviral, and anti-tumor effects. The supply of artemisinin depends on its content in Artemisia annua, in which various environmental factors can affect the plant's biosynthetic yield. In this study, the effects of different light-emitting diode (LED)-irradiation conditions were tested to optimize the germination and growth of Artemisia annua for the enhanced production of artemisinin. Specifically, the ratio between the red and blue lights in the irradiating LED was varied for investigation as follows: [Red : Blue] = [6 : 4], [7 : 3], and [8 : 2]. Furthermore, additional stress factors like UV-B-irradiation (1,395 ㎼/cm2), low temperature (4℃), and dehydration were also explored to induce hormetic expressions of ADS, CYP, and ALDH1, which are essential genes for the biosynthesis of artemisinin. Quantitative polymerase chain reaction (qPCR) was used to analyze the expression levels of the respective genes and their correlation with the specified conditions. [8 : 2] LED-irradiation was the most optimal among the tested conditions for the cultivation of Artemisia annua in terms of both fresh and dry weights post-harvest. For the production of artemisinin, however, [7 : 3] LED-irradiation with dehydration for six hours pre-harvest was the most optimal condition by inducing around twofold enhancement in the biosynthetic yield of artemisinin. As expected, a correlation was observed between the expression levels of the genes and the contents of artemisinin accumulated.

Oil Spill Detection Mechanism using Single-wavelength LED and CCD (단일 파장의 LED와 CCD를 이용한 유출유 탐지방법)

  • Oh, Sangwoo;Lee, Moonjin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.323-329
    • /
    • 2012
  • In this study, a new optical method for oil detection using an analysis the light-absorption image of separate oil-water mixture with a LED illumination is described. To obtain an information about the presence of oil on water and the thickness of oil, the intensity of light-absorption images acquired through CCD is analyzed. To select the optimal wavelength of the light source, the experiment is conducted using several LEDs having four different wavelength. In the case of using a blue LED having 465 nm wavelength, an intensity decreasing tendency of light-absorption image is obvious and clear. To identify the applicability of sensing system at the real sea condition, experiments are conducted as varying the brightness and water surface angle. Through this research, new optical oil detection methodology is proposed using the absorption difference between water and oil with single-wavelength LED and CCD.

Effects of LED(Light Emitting Diode) Photoperiod and Light Intensity on Growth and Yield of Taraxacum coreanum Nakai in a Plant Factory (식물공장 내 광주기 및 광도가 흰민들레의 생육과 수량에 미치는 영향)

  • Hwang, Yeon Hyeon;Park, Ji Eun;Chang, Young Ho;An, Jae Uk;Yoon, Hae Suk;Hong, Kwang Pyo
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.232-239
    • /
    • 2016
  • The objective of this study was to examine the effect of photoperiod and light intensity of RBW LED (red:blue:white = 2:1:1) on the growth of Taraxacum coreanum Nakai in a fully artificial light type plant factory. 3 photoperiods and 4 light intensity were used respectively in a fully artificial light type plant production system. Plants were cultured with three photoperiods and four light intensity regimes (conditions) for 270 and 120 days, respectively, using nutrient film technique (NFT) or aeroponics culture methods. For each photoperiod, the total leaves per plant harvested 8 times in all cultivation period was 224 in the 16/8(day/light) photoperiod that had no significant difference from 220 in the 12/12 photoperiod and the lowest number of leaves was 151 occurred in the 8/16 photoperiod, which means that the longer photoperiod, the more leaves harvest. Total fresh weight of above ground was the high in order of in 16/8 photoperiod as 125g, 12/12 photoperiod as 91g, 8/16 photoperiod as 56g. For each light intensity, the total leaves per plant harvested 4 times in all cultivation period was the great in order of $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 123, $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 107, $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 95, $50{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 56 which was the smallest number of total leaves harvest. Total fresh weight of above ground per plant was the high in order of $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 43.6g, $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 34.6g, $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 32.2g, $50{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 18.2g. From these results, it was concluded that photoperiod of 16/8 and light intensity at $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ can be used as the light condition of RBW LED (red:blue:white = 2:1:1) for optimal growth of Taraxacum coreanum Nakai in a fully artificial light type plant factory.

Growth Characteristics of Lettuce under Different Frequency of Pulse Lighting and RGB Ratio of LEDs (LED의 간헐조명과 RGB 비율에 따른 상추의 품종별 생육 특성)

  • Kim, Sungjin;Bok, Gwonjeong;Lee, Gongin;Park, Jongseok
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.123-132
    • /
    • 2017
  • This study was aimed to investigate the effect of 1)irradiation with several different ratios using red, green, and blue LEDs and 2)various pulsed light irradiation with 50% duty ratio using red and blue LEDs on the growth and morphogenesis of three lettuce cultivars (Lactuca sativar L. cv. 'Jukchukmeon', 'Lolo Rosa', and 'Grand Rapid') in hydroponics culture system for 4 weeks after transplanting. Seeds were sown in rock-wool plug trays and they were placed in a culture room which was controlled at $23{\pm}1^{\circ}C/18{\pm}1^{\circ}C$ temperature and 50-60/70-85% for day and night, respectively, during cultivation period. Irradiated RGB ratios with LEDs were 6:3:1, 5:2.5:2.5, 3:3:4, 2:2:6, and 1:1:8 with $110{\pm}3{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD on the surface of cultivation bed. The frequencies of pulsed lighting was 50, 100, 500, 1,000, 5,000, 10,000, 25,000Hz (20, 10, 0.1, 0.04 ms) with red and blue LEDs and 50% duty ratio. At the RGB ratio of 6:3:1, the average fresh weight of 'Jukchukmeon' was significantly higher than that of other RGB treatments, but no significant difference compared to the fluorescent treatment. The average fresh weight at 1:1:8 RGB ratio in 'Lolo Rosa' was significantly lower than that of other RGB treatments. Leaf number and fresh weight of 'Grand Rapid' were significantly lower in the control and 1:1:8 RGB treatments, compared to the other RGB treatments. As the ratio of blue light increased, leaf length decreased and leaf shape became round in three lettuces. Although there is little change in growth, it could not be found any tendency to affect the growth and morphogenesis of three lettuces caused by increasing or decreasing frequency of pulsed lighting with 50% duty ratio at the $72{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD.

Effects of LED Light Quality on the Growth and Leaf Color of Orostachys japonica and O. boehmeri (LED 광질이 바위솔과 자질연화바위솔의 생장과 엽색에 미치는 영향)

  • Lee, Jae Hwan;Soh, Soon Yil;Kim, Hyeon Jin;Nam, Sang Yong
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.104-113
    • /
    • 2022
  • Plants under the genus Orostachys have been known as medicinal plants. This study deems to determine the growth and leaf color of Orostachys japonica and O. boehmeri when subjected to various LED light sources. A total of seven LED light treatments were used, i.e. red (630 nm), green (520 nm), blue (450 nm), purple (650 and 450 nm), 3000 K white (455, 600 nm), 4100 K white (455, 590 nm), and 6500 K white (450, 545 nm) LEDs. Results showed that O. japonica plants showed favorable growth under 4100 K white LED, while O. boehmeri plants had a positive growth response under white light LEDs (3000, 4100, and 6500 K). In leaf color analysis, the use of green LED showed the greatest change in CIELAB L* and b* values which were relatively higher compared to other treatments indicating that leaves turned yellowish. Further statistical analysis using Pearson's correlation also suggested that there is a small negative association between dry weight and b* values of O. japonica, and a negative moderate association between plant weights (fresh and dry weight) and leaf color (L* and b*) and positive association between said plant weights and a* color values of O. boehmeri. Therefore, it is recommended to cultivate O. japonica under 4100 K white LED and O. boehmeri under 3000, 4100, 6500 K white LEDs.

Attraction Effects of Sex Pheromone and LED Mass-Trap to Spodoptera exigua and Spodoptera litura (Fabricius) Adults around the Tomato Greenhouse (토마토 재배지 성페로몬 및 LED 유인 트랩을 이용한 파밤나방(Spodoptera exigua)과 담배거세미나방(Spodoptera litura) 대량 포획)

  • Lee, Jung Sup;Bang, Ji Wong;Lee, Jae Han;Jang, Hye Sook
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.22-27
    • /
    • 2022
  • The attraction effects of light emitting diode (LED) trap to Spodoptera exigua and Spodoptera litura adults were evaluated in greenhouse and compared with those of no light trap, which is typical used in commercial trap. At this time, in order to attract these two species of moths, sex pheromone traps were installed at the top side according to the degree of tomato growth inside the tomato cultivation greenhouse around the LED trap. In addition, two types of light-emitting traps (420 nm, 470 nm) were installed in the greenhouse at 1/40 m2, respectively. Also two sex pheromone were installed inside of the greenhouse according to the height of the tomato plants. 10 days later, Blue-light trap(BLB, 470 nm wavelength) was 3.1-3.5 times more attractive than Violet-light trap(VLB, 420 nm wavelength) in S. exigua (105.6 ± 7.3) and S. litura (42.0 ± 3.1) respectively, whereas the no-light trap was little attractive to S. exigua (33.7 ± 2.8) and S. litura (12.0 ± 1.5). On the other hand, after the installation of the sex pheromone trap and the LED trap, there was no damage to S. litura (Fabricius) and S. exigua in the pesticide-free area, indicating a high possibility of control. At this time, the operating cost of the two types of LED traps was 80 won/m2 per unit area, and it was confirmed that both types of moths could be controlled. In addition, as a result of confirming the number of two types of moths caught in the sexual pheromone trap and two types of LED traps after 4 months, it was judged that eco-friendly control was possible as more than 373 moths/trap were attracted to the two types of moths.