• 제목/요약/키워드: Blood flow rate

검색결과 486건 처리시간 0.024초

Relationship between Saliva Factors Measured Using the SILL-Ha Saliva Test System and Blood Cell Counts according to Perceived Stress Scale Scores in Female College Students

  • Lee, Sun-Mi;Jung, Eun-Ha;Jun, Mi-Kyoung
    • 치위생과학회지
    • /
    • 제21권3호
    • /
    • pp.150-157
    • /
    • 2021
  • Background: Stress as a cause of mental health problems is known to be more prevalent in women than in men and has a negative effect on several aspects of physical health, such as the composition of blood and saliva. This study investigated the relationship of perceived stress with blood cell counts, saliva flow rate, and saliva factors. Methods: We recruited women in their 20s with a high prevalence of stress. Stress was evaluated using the Korean version of the perceived stress scale. Blood tests included white blood cell, hemoglobin, and platelet. We then examined the saliva flow rate and cariogenic bacteria level, acidity, occult blood, buffer capacity, leukocyte level, protein level, and ammonia level using rinse water with the SILL-Ha saliva test system. Results: In a total of 70 participants, the average age was 21.64 years old, the average perceived stress score was 16.96±4.32, and high levels of stress were reported by 80% of the participants (n=56). The high-stress group had lower hemoglobin levels. In addition, the high-stress group showed a lower saliva flow rate than the low-stress group, and there was a difference in the salivary acidity and buffer capacity. The total perceived stress score showed a positive correlation with acidity and negative correlation with buffer capacity and the hemoglobin level. Conclusion: This study found that stress in female college students might affect the composition of blood and saliva. High levels of stress were positively correlated with the hemoglobin level, saliva flow rate, and acidity and negatively correlated with the buffer capacity.

주기 가속도 위상변화에 따른 협착 및 분지 혈관의 혈류 특성에 대한 수치해석적 연구 (NUMERICAL STUDY ON THE BLOOD FLOW CHARACTERISTICS OF STENOSED AND BIFURCATED BLOOD VESSELS WITH A PHASE ANGLE CHANGE OF A PERIODIC ACCELERATION)

  • 노경철;조성욱;이성혁;유홍선
    • 한국전산유체공학회지
    • /
    • 제13권3호
    • /
    • pp.44-50
    • /
    • 2008
  • The present study is carried out in order to investigate the effect of the periodic acceleration in the stenosed and bifurcated blood vessels. The blood flow and wall shear stress are changed under body movement or acceleration variation. Numerical studies are performed for various periodic acceleration phase angles, bifurcation angles and section area ratios of inlet and outlet. It is found that blood flow and wall shear stress are changed about ${\pm}20%$ and ${\pm}24%$ as acceleration phase angle variation with the same periodic frequency. also wall shear stress and blood flow rate are decreased as bifurcation angle increased.

Comparison of Shear-Thinning Blood Flow Characteristics between Longitudinal and Transverse Vibration

  • Choi, Sung-Ho;Shin, Se-Hyun;Lee, Kyung-Tae
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2258-2264
    • /
    • 2004
  • This article described the numerical investigation of shear-thinning blood flow characteristics when subjected to longitudinal and transverse vibrations and delineated the underlying mechanisms of the flow rate enhancements, respectively. In order to fully consider the mechanical vibrations of the capillary, a moving wall boundary condition was adopted. The present numerical results showed that the longitudinal vibration caused a significant increase of wall shear rates, which resulted in a decrease of viscosity and the subsequent increase of flow rates. However, the shear rate for the transverse vibration was slightly increased and the calculated flow rate was underestimated comparing with the previous experimental results.

소합향원(蘇合香元)이 실험적(實驗的) 뇌경색(腦梗塞) 흰쥐의 국소뇌혈류량(局所腦血流量) 및 경색(梗塞) 면적에 미치는 영향(影響) (The Effect of Sohabhyangwon(蘇合香元) on Regional Cerebral Blood Flow and Area of Cerebral Infarction in the Experimentally induced Cerebral Infarction in Rats)

  • 최은정;신길조;이원철
    • 대한한의학회지
    • /
    • 제18권1호
    • /
    • pp.456-469
    • /
    • 1997
  • The cerebral infarction arised from occulsion of cerebral artery has a high mortality rate and fatal sequelae. Sohabhyangwon(蘇合香元) is generally regarded to have a effect of walking up the patient from unconsiousness and promoting the flow of Qj(氣) by warming channel. METHOD The purpose of this study is to find out the effections of Sohabhyangwon(蘇合香元) on regional cerebral blood flow and relative cerebral infarction area in the experimentally induced infartion in rats In this experiment, 12 Spraque-Dawley rats weighting 280-350g were used. Cerebral ischemia induced by intraluminal suture technique of Kozumi's and Zea-Longer's method. $Co_{2},\;O_2$, pH, arterial blood pressure in rats were checked by Blood Gas Analyzer every 30 minutes for 2 hours. And regional cerebral blood flow were checking by hydrogen clearance technique, cerebral infarcted area was megsured by Image Analysis System. RESULTS 1. During the experiment, $CO_{2},\;O_2$, pH, arterial blood pressure in rats had no change in both sample group and control group. 2. Cortical cerebral blood flow decreased at same rate in both sample group and control group after inducing cerebral infarction. 3. On comparison of relative cerebral infarcted area, Sohabhyangwon(蘇合香元) perfused group showed a significant decrease. CONCLUSION According to the result above, Sohabhyangwon has a protection effect on cranial nerve and-has no effect on cerebral blood flow.

  • PDF

머리회전과 측정자세에 따른 뒤대뇌동맥의 혈류속도 변화 (Changes in Posterior Cerebral Artery Blood flow Velocity Following Head rotation and body Positioning)

  • 박민철;김종순
    • 대한물리의학회지
    • /
    • 제10권1호
    • /
    • pp.115-120
    • /
    • 2015
  • PURPOSE: Vertebrobasilar insufficiency (VBI) should be carefully assessed in patient for whom manipulation of the cervical spine is to be undertaken. The purpose of this study was to investigate the changes in posterior cerebral artery blood flow velocity following head and body positioning by transcranial doppler ultrasonography (TCD) in healthy subjects. METHODS: Twenty two healthy female (mean age $20.77{\pm}1.30yrs.$) participants volunteered to participate in the study. None of the participants had a history of neck pain or headache within the last 6 months. To evaluate the cerebral blood flow, we measured the mean flow velocity of the posterior cerebral artery unilaterally (right side). The blood flow velocity was measured under 3 different head positions (in a neutral head position, ipsilateral head rotation and contralateral head rotation position) and 2 different body conditions (supine position and sitting position). RESULTS: The mean blood flow velocity of posterior cerebral artery was decreased in body positioning from supine to sitting (p<.05), but the decreased rate of blood flow velocity in posterior cerebral artery did not change significantly between ipsilateral head rotation and contralateral head rotation (p>.05). CONCLUSION: These result of our study show that body positioning (sitting and supine) affect the blood flow velocity in posterior cerebral artery.

방풍산(防風散)이 실험동물(實驗動物)의 심혈관계(心血管系)에 미치는 영향(影響) (Effects of Bangpoongsan on the Cardiovascular System in the Experimental Animals)

  • 허재혁;김세길
    • 대한한방내과학회지
    • /
    • 제16권1호
    • /
    • pp.181-196
    • /
    • 1995
  • The present experiments were designed to investigate the effects of BangPoongSan on the cardiovascular system in the experimental Animals. And thus the change of blood pressure, auricular blood flow, artery contraction, death rate, platelet aggregation repression, plasma coagulation factor activity, plasma antithrombin activity, whole blood viscosity and plasma viscosity were studied. The result were summarized as the followings: 1. BangPoongSan dropped the blood pressure in the spontaneous hypertensive rat. 2. The drug increased the auricular blood flow in rabbit. 3. The drug relaxed the artery contraction by pretreated norepinephrine in white rat. 4. The drug inhibited the death rate of mouse which was led to thromboembolism by serotonin and collagen. 5. The drug inhibited the platelet aggregation in rat. 6. The drug prolonged the prothrombin time and activated partial thromboplastin time on the test of plasma coagulation factor activity in rat, but was not valuable. 7. The drug presented the antithrombin activity in rat. 8. The drug reduced the whole blood viscosity and plasma viscosity in rat, but the latter was not valuable. According to the results, Bangpoongsan increased the blood flow and dropped the blood pressure by dilatation of blood vessel smooth muscle. And the drug presented the antithrombin acivity, inhibited the platelet aggregation and reduced blood viscosity. Therefore these effects are assumed to improve the cardiovascular circulation disorder and prevent thrombosis.

  • PDF

20대 남성에서 최대운동이 뇌로가는 혈관인 총경동맥 혈류 속도에 미치는 영향 (Maximum exercise in 20 men Common carotid artery blood flow velocity impact)

  • 김지원
    • 한국방사선학회논문지
    • /
    • 제3권4호
    • /
    • pp.5-12
    • /
    • 2009
  • 총경동맥은 심장으로부터 혈액을 직접 대뇌로 전달하는 동맥 혈류 순환이 중요하며, 특히 동맥 혈관내의 혈액의 흐름을 방해하는 여러 변인들이 있다. 그 변인 중에서도 평균혈류속도, 맥박지수, 및 혈류 저항 변인 등이 있는데, 이중 맥박지수나 혈류저항지수는 최대 수축기와 이완기시 혈류속도와 관련이 되어있기 때문에 혈압과도 중요한 변인들이 된다, 이와 같은 뇌혈류 속도 변인들의 변화에 대해서 관찰하는 데는 비침습적인 초음파를 이용한 도플러 뇌혈류 측정법을 이용한다. 최대운동은 20대 남성에서 뇌로가는 혈류인 총경동맥의 혈류속도를 증가 시킬 수 있는 것으로 나타났다.

  • PDF

Particle Image Velocimetry of the Blood Flow in a Micro-channel Using the Confocal Laser Scanning Microscope

  • Kim, Wi-Han;Kim, Chan-Il;Lee, Sang-Won;Lim, Soo-Hee;Park, Cheol-Woo;Lee, Ho;Park, Min-Kyu
    • Journal of the Optical Society of Korea
    • /
    • 제14권1호
    • /
    • pp.42-48
    • /
    • 2010
  • We used video-rate Confocal Laser Scanning Microscopy (CLSM) to observe the motion of blood cells in a micro-channel. Video-rate CLSM allowed us to acquire images at the rate of 30 frames per second. The acquired images were used to perform Particle Image Velocimetry (PIV), thus providing the velocity profile of the blood in a micro-channel. While previous confocal microscopy-assisted PIV required exogenous micro/nano particles as the tracing particles, we employed blood cells as tracing particles for the CLSM in the reflection mode, which uses light back-scattered from the sample. The blood flow at various depths of the micro-channel was observed by adjusting the image plane of the microscope. The velocity profile at different depths of the channel was measured. The confocal micro-PIV technique used in the study was able to measure blood velocity up to a few hundreds ${\mu}m/sec$, equivalent to the blood velocity in the capillaries of a live animal. It is expected that the technique presented can be applied for in vivo blood flow measurement in the capillaries of live animals.

공기압력모델에 기반한 혈류 시뮬레이터의 동적 특성 평가 (Dynamic Performance Evaluation of Blood Flow Simulator Based on Windkessel Models)

  • 전세종;진종한
    • 한국정밀공학회지
    • /
    • 제33권6호
    • /
    • pp.509-516
    • /
    • 2016
  • A blood flow simulator is one of the experimental devices used to better understand the cardiovascular system. Time-Domain analysis is not sufficient to understand the cardiovascular system because of the effects related to pulsating flows. Even when the mean pressure and mean flow rate of the blood flow simulators are satisfied, the dynamic properties can differ from the desired performance. In this paper, the Windkessel model, a well-known mathematical model of the cardiovascular system, was employed to obtain optimized pressure using initial values. The Windkessel parameters, including flow resistance, R, are expected to lead to a better understanding of the dynamic behavior of cardiovascular systems.

UNTEADY HEAT FLOW AND TEMPERATURE VARIATION IN HUMAN SST REGIONS

  • Sanyal, D.C.;Maji, N.K.
    • Journal of applied mathematics & informatics
    • /
    • 제9권2호
    • /
    • pp.731-744
    • /
    • 2002
  • The temperature distribution in human skin and subdermal tissue layer is presented using bioheat transfer equation. The body temperature is determined by the balance between heat produced and heat lost by our body. The time-dependent solutions have been found to be affected by the metabolic heat generation rate, blood mass flow, the rate of evaporation of perspiration and also by the atmospheric temperature. The analytic solutions for different layers have been calculated numerically and are also shown graphically.