• Title/Summary/Keyword: Block-based Coding

Search Result 473, Processing Time 0.03 seconds

Reliability-Based Deblocking Filter for Wyner-Ziv Video Coding

  • Dinh, Khanh Quoc;Shim, Hiuk Jae;Jeon, Byeungwoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.129-142
    • /
    • 2016
  • In Wyner-Ziv coding, video signals are reconstructed by correcting side information generated by block-based motion estimation/compensation at the decoder. The correction is not always accurate due to the limited number of parity bits and early stopping of low-density parity check accumulate (LDPCA) decoding in distributed video coding, or due to the limited number of measurements in distributed compressive video sensing. The blocking artifacts caused by block-based processing are usually conspicuous in smooth areas and degrade the perceptual quality of the reconstructed video. Conventional deblocking filters try to remove the artifacts by treating both sides of the block boundary equally; however, coding errors generated by block-based processing are not necessarily the same on both sides of the block boundaries. Such a block-wise difference is exploited in this paper to improve deblocking for Wyner-Ziv frameworks by designing a filter where the deblocking strength at each block can be non-identical, depending on the reliability of the reconstructed pixels. Test results show that the proposed filter not only improves subjective quality by reducing the coding artifacts considerably, but also gains rate distortion performance.

Video coding based on wavelet transform for very low bitrate channel (웨이브릿 변환을 사용한 초저속 전송 매체용 비디오 코딩)

  • 오황석;이흥규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.822-833
    • /
    • 1996
  • The video coding for very low bit rate has recently received considerable attention, but conventional block based transform coding schemes suffer from the blocking effect for the constraints of bit rates. In this paper, we present a video coding sysem suing multi-resolution motion estimation/compensation with variable size block(VMRME/C) and multi-resolution vector quantization(MRVQ) in wavelet transform domain for very low bit rate coding. It is shown that the presented scheme has better performance in the peak signal-to-nose ratio(RSNR) by 0.2-0.6 dB as well as subjective quality than that of conventional block based transform video coding techniques(especially, H. 263 which is DCT based video coding).

  • PDF

Subblock Based Temporal Error Concealment of Intra Frame for MPEG-2 (서브 블록을 이용한 MPEG-2 인트라 프레임의 시간적 오류 은닉)

  • Ryu, Chul;Kim, Won-Rak
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.167-169
    • /
    • 2005
  • The occurrence of a single bit error in transmission bitstream leads to serious temporal and spatial errors. Because moving picture coding as MPEG-2 based on block coding algorithm uses variable length coding and motion compensation coding algorithm. In this paper, we propose algorithm to conceal occurred error of I-frames in transmission channel using data of the neighboring blocks in decoder. We divide a damaged macroblock of I-frame into four sub blocks and compose new macroblock using the neighboring blocks for each sub block. We estimate the block with minimum difference value through block matching with previous frame for new macroblocks and replace each estimated block with damaged sub block in the same position. Through simulation results, the proposed algorithm will be applied to a characteristic of moving with effect and shows better performance than conventional error concealment algorithms from visual and PSNR of view.

  • PDF

A New Effective Measure of the Block Effect in Still Images and Moving Pictures (정지영상 및 동영상에서의 효율적인 블록효과 측정방법)

  • 김문성;정진구
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.102-107
    • /
    • 2002
  • Compression coding based on block coding has been applied in image and video compression standard. But there is no block effect measurement due to block based image coding. In this paper, we propose a objective block effects measurement to reconstructed image using subblock DCT coding. Experimental results show that the block effects measures given by the suggested method agree well with the subjective ranking. This new objective measurement is simple and effective in measuring the block effect in the reconstructed image.

  • PDF

Block-based subband/DCT coding (블록단위 대역분할/DCT 부호화)

  • 김정권;이상욱;이충웅
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.2
    • /
    • pp.97-105
    • /
    • 1998
  • Subband/DCT coding has been introduced in order to transmit images of various resultions using one given image-codec, for nowadays there are various grades of quality in visual communication services. However, subband/DCT results in the increawse of multiplication number and memory size. In order to resolve this problem, we propose block-based subband/DCT coding in this paper. In block-based subband/DCT, the number of multiplications is not only reduced because we combine subband decomposistion with DCT, but the size of memory is also reduced because images can be parallel-processed block by block. We show that the number of multiplications is reduced, by analyzing the property ofblock-based subband/DCT matrix mathematically, and examine the performance of proposed coder, which adopts JPEG as backhand-coder after block-based subband/DCT.

  • PDF

Depth-map coding using the block-based decision of the bitplane to be encoded (블록기반 부호화할 비트평면 결정을 이용한 깊이정보 맵 부호화)

  • Kim, Kyung-Yong;Park, Gwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.232-235
    • /
    • 2010
  • This paper proposes an efficient depth-map coding method. The adaptive block-based depth-map coding method decides the number of bit planes to be encoded according to the quantization parameters to obtain the desired bit rates. So, the depth-map coding using the block-based decision of the bit-plane to be encoded proposes to free from the constraint of the quantization parameters. Simulation results show that the proposed method, in comparison with the adaptive block-based depth-map coding method, improves the average BD-rate savings by 3.5% and the average BD-PSNR gains by 0.25dB.

Wavelet based Embedded Video Coding with 3-D Block Partition (3-D 블록분할을 이용하는 웨이브렛 기반 임베디드 비디오 부호화)

  • 양창모;임태범;이석필
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.133-136
    • /
    • 2003
  • In this paper, we propose a low bit-rate embedded video coding scheme with 3-D block partition in the wavelet domain. The proposed video coding scheme includes multi-level three dimensional dyadic wavelet decomposition, raster scanning within each subband, partitioning of blocks, and adaptive arithmetic entropy coding. Although the proposed video coding scheme is quite simple, it produces bit-streams with good features, including SNR scalability from the embedded nature. Experimental results demonstrate that the proposed video coding scheme is quite competitive to other good wavelet-based video coders in the literature.

  • PDF

Development of Python Education Program for Block Coding Learners (블록코딩 선행학습자를 위한 Python 교육 프로그램 개발)

  • Kim, Taeryeong;Han, Sungwan
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.1
    • /
    • pp.53-60
    • /
    • 2018
  • In this study we have developed a Python education program that can be applied to students who have studied block-based coding. We have developed a Python education program based on the extracted the learners' level of block-based coding by analyzing the programs and the textbooks. We extracted the grammar of the block-based coding and constructed the curriculum. Then, the Python education program was composed by 16 hours. After reviewing the appropriateness of the education program through expert validation, it was concluded that the developed Python education program is suitable for applying to learners of block-based coding. We expect that proposed program will be effectively applied as basic resources to learn script coding in class.

Region adaptive motion compensated error coding using extension-interpolation/2D-DCT (확장-보간/2D-DCT 기법을 이용한 영역 적응적인 이동보상 오차의 보호화)

  • 조순재;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1691-1697
    • /
    • 1997
  • This paper presents a new motion compensated error coding method suitable for region based image coding system. Compared with block based conding, the region based coding improves subjective quality as it estimates and compensates 2D (or 3D) translantional, rotational, and scaling motion for each regions. although the region based coding has this advantage, its merit is reduced as bock-DCT (2D-DCT) is used to encode motion-compensated error. To overcome this problem, a new region adaptive motion compensated error coding technique which improver subjective and objective quality in the region boundary is proposed in this paper. In the proposed method, regions with large error are estimated using contour of the regions and contrast between the regions. The regions estiated as those with large error are coded by arbitrarily shaped image segment coding method. The mask information of the coded regions is not transmitted because it is estimated as the same algorithm in the encoder and the decoder. The proposed region adaptive motion conpensated error coding method improves about 0.5dB when it is compared with conventional block based method.

  • PDF

A Study on the Change of the Perception of Students' Computational Thinking and Scientific Attitudes in Earth Science Classes Using a Block-based Coding (블록형 코딩프로그램을 활용한 지구과학 수업에서 학생들의 컴퓨팅 사고력에 대한 인식 및 과학적 태도 변화 연구)

  • Han, Shin;Kim, Hyoungbum
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.12 no.2
    • /
    • pp.131-140
    • /
    • 2019
  • In this study, a block-base coding that could develop computing thinking was applied to Earth science teaching and learning to identify how the perception of computational thinking and scientific attitude was changed as part of creativity education. Based on the results of the study, the conclusions are as follows: First, an Earth science education program was developed using a block-based coding for elementary school students. The 12-hour program was designed for inquiry activities to encourage students to engage in various thinking by providing them with activity-oriented problems. Second, the Earth science education program using a block-based coding showed significant results in confidence in the use of a computer program, integrated learning with a computer, computational thinking, and problem-solving factors with computational thinking. Third, the Earth science education program using block-based coding showed significant differences in the categories of curiosity, criticism, cooperation, persistence, and creativity. It could be judged that it was effective for students in the process of questioning and trying to solve the problem themselves.