• Title/Summary/Keyword: Block transportation scheduling

Search Result 7, Processing Time 0.026 seconds

Optimal Block Transportation Scheduling Considering the Minimization of the Travel Distance without Overload of a Transporter (트랜스포터의 공주행(空走行) 최소화를 고려한 블록 운반 계획 최적화)

  • Yim, Sun-Bin;Roh, Myung-Il;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.646-655
    • /
    • 2008
  • A main issue about production management of shipyards is to efficiently manage the work in process and logistics. However, so far the management of a transporter for moving building blocks has not been efficiently performed. To solve the issues, optimal block transporting scheduling system is developed for minimizing of the travel distance without overload of a transporter. To implement the developed system, a hybrid optimization algorithm for an optimal block transportation scheduling is proposed by combining the genetic algorithm and the ant algorithm. Finally, to evaluate the applicability of the developed system, it is applied to a block transportation scheduling problem of shipyards. The result shows that the developed system can generate the optimal block transportation scheduling of a transporter which minimizes the travel distance without overload of the transporter.

Transporter Scheduling Based on a Network Flow Model for Dynamic Block Transportation Environment (동적 블록수송환경을 위한 네트워크 흐름모형 기반의 트랜스포터 일정계획)

  • Lee, Woon-Seek;Lim, Won-Il;Koo, Pyung-Hoi
    • IE interfaces
    • /
    • v.22 no.1
    • /
    • pp.63-72
    • /
    • 2009
  • This paper considers a transporter scheduling problem under dynamic block transportation environment in shipbuilding. In dynamic situations, there exist the addition, cancellation or change of block transportation requirements, sudden breakdowns and maintenance of transporters. The transportation of the blocks in the shipyard has some distinct characteristics. Some blocks are available to be picked up at a specific time during the planning horizon while some other blocks need to be delivered before a specific time. These requirements cause two penalty times: 1) delay times incurred when a block is picked up after a required start time, and 2) tardy times incurred when a block shipment is completed after the required delivery time. The blocks are located at different areas in the shipyard and transported by transporters. The objective of this paper is to propose a heuristic algorithm based on a network flow model which minimize the weighted sum of empty transporter travel times, delay times, and tardy times. Also, a rolling-horizon scheduling method is proposed for dynamic block transportation environment. The performance of the proposed heuristic algorithms are evaluated through a simulation experiment.

Transporter Scheduling for Dynamic Block Transportation Environment (동적 블록수송환경을 위한 트랜스포터 일정계획)

  • Lee, Woon-Seek;Lim, Won-Il;Koo, Pyung-Hoi;Joo, Cheol-Min
    • IE interfaces
    • /
    • v.21 no.3
    • /
    • pp.274-282
    • /
    • 2008
  • This paper considers a transporter scheduling problem under dynamic block transportation environment in shipbuilding. In dynamic situations, there exist the addition or cancellation of block transportation requirements, sudden breakdowns and maintenance of transporters. The transportation of the blocks in the shipyard has some distinct characteristics. Some blocks are available to be picked up at a specific time during the planning horizon while some other blocks need to be delivered before a specific time. These requirements cause two penalty times : 1) delay times incurred when a block is picked up after a required start time, and 2) tardy times incurred when a block shipment is completed after the required delivery time. The blocks are located at different areas in the shipyard and transported by transporters. The objective of this paper is to propose heuristic algorithms which minimize the weighted sum of empty transporter travel times, delay times, and tardy times. Four heuristic algorithms for transporter scheduling are proposed and their performance is evaluated.

Research on scheduling and optimization under uncertain conditions in panel block production line in shipbuilding

  • Wang, Chong;Mao, Puxiu;Mao, Yunsheng;Shin, Jong Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.398-408
    • /
    • 2016
  • Based on non-completely hybrid flow line scheduling of panel block in shipbuilding, several uncertain factors influencing the problem were analyzed in a real environment, and a nonlinear integer programming model was built for each sub-scheduling problem. To narrow the difference between theory and application, rolling horizon and rescheduling methods are proposed. Moreover, with respect to the uncertainty of processing time, arriving time and due time, we take the minimizing of the early and delayed delivery costs as the objective, and establish an evaluation with a global penalty function. Finally, numerical experiments and a simulation analysis were undertaken to demonstrate the effectiveness of the model and algorithm.

A Comparative Study of the Flexible Moving Block System and the Fixed Block System in Urban Railway (도시철도에 있어 이동폐색방식과 고정폐색방식의 상호비교 연구)

  • Jeong, Gwangseop;Park, Jeongsoo;Won, Jaimu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.723-730
    • /
    • 2006
  • Recently, The flexible moving block system in train operation has been introduced to the worldwide rail transportation markets. This paper is a comparative study of the conventional fixed block systems effects and the flexible moving block system on train operating time saving. Based on the literature review, the new algorithm is developed. It is to calculate the optimum headway time of the train. The proposed algorithm can overcome some of the existing algorithm problems, such as the limits of the data and unaware of the rail characteristic. The total travel time saving effect has been analyzed by applying the skip stop scheduling system to the each block system. The results of this study indicated that the total travel time is approximately 40% decreased and the schedule velocity is approximately 24% improved when the moving block system is applied. The results of this study could be used as a theoretical basis for the selection of rail signal system in Seoul's subway number 2 line.

An Operation Scheduling of Transporters Considering Turns and Passing Delay at the Intersection Roads on the Shipyard (교차로 구간 회전 및 감속을 고려한 트랜스포터 최소 공주행 운영계획)

  • Moon, Jong-Heon;Ruy, Won-Sun;Cho, Doo-Yeoun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.187-195
    • /
    • 2017
  • The operation planning of transports used to move blocks is the one of key factors. Furthermore, reducing the running time through the effective plan contributes to pulling forward the whole logistic process of the shipyard and substantially saving the fuel consumption of itself as well. The past researches of the transporter focused on finding only the shortest distances, so called, Manhattan distance. However, these searching approaches cannot help having the significant difference in the real operational time and distance with the minimum cost approach which considers the speed retardation for turns or safety at the intersection. This study suggests the noble transporter's operational model which could take account of the consuming operational time around the crossroads on the shipyard. Concretely, the proposed method guarantees the minimization of transporters' turns and passage number which are huge burdensome to the operation time and the whole planning of transports with the given period. Resultantly, this paper is willing to explain the appropriateness of our approach, compared with the previous ones.

Transporter Scheduling for Block Transportation in the Shipyard (조선소에서 블록 수송을 위한 복합트랜스포터 일정계획)

  • Ju, Cheol-Min;Lee, Un-Sik;Lee, Gang-Bae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.348-352
    • /
    • 2005
  • 본 논문은 조선소에서 계획기간동안 각 플랜트의 생산일정에 따른 블록의 모든 수송요구량이 미리 알려져 있는 정적인(static) 수송환경을 고려한 트랜스포터 일정계획문제를 다룬다. 조선소 내에서 블록들의 수송은 몇 가지 특성을 가진다. 500톤을 초과하는 거대 블록들은 2대 이상이 결합된 새로운 형태의 트랜스포터를 이용하여 운반된다. 운반이 요구되는 블록들 중 일부는 계획기간동안 규정된 출발요구시각에 pick-up되기를 요구하는 반면 나머지 블록들은 계획기간동안 규정된 도착요구시각 전에 delivery되기를 요구한다. 이러한 트랜스포터의 결합 및 시간 제약은 문제를 더욱 복잡하게 하는 요인이 된다. 본 논문에서는 계획기간 내에 모든 블록운반 요구사항들(출발지와 도착지, pick-up과 delivery 시각, 톤수, 결선 등)을 만족시키는 트랜스포터 일정계획문제를 다룬다. 트랜스포터 일정계획문제에서 중요한 주제는 총 로지스틱스 시간 (공차운행시간, delay 시간 및 tardy 시간)을 최소화하기 위해 계획기간 내에 최소의 트랜스포터 운영대수로 각 트랜스포터에 어떤 블록을 할당하고 어떤 순서로 운반할 것인 지를 결정하는 것이다. 이에 본 논문에서는 주어진 트랜스포터 일정계획문제를 해결하기 위해, 1단계에서 최소비용 네트워크 흐름문제를 근간으로 트랜스포터의 최소사용대수를 구하고 이를 기초로 2단계에서 각 트랜스포터에의 블록 할당과 운반순서를 결정하는 2단계 휴리스틱 알고리즘을 제안한다.

  • PDF